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Class Introduction 

 Time & Venue:  Tuesday (3,4),  C211    

 Teaching Materials 

 Manufacturing Systems Modeling, Analysis and Optimization (PPT) 

 Manufacturing Systems Modeling and Analysis. Guy L. Curry, Richard M. 

Feldman (Eds.), Springer, 2009 

 Handbook of Memetic Algorithms. Ferrante Neri, Carlos Cotta, and Pablo 

Moscato (Eds.), Springer, 2011 

 Production Planning and Control for Semiconductor Wafer Fabrication Facilities-

Modeling, Analysis and Systems. Lars Monch, John W.Fowler and Scott J.Mason, 

Springer, 2013 

 Grading Procedures:  Attendance (20%) + Final Exam (80%) 



Main Contents 

Part 1: Manufacturing systems modeling and analysis 

 Performance measures, Introduction to factory models 

Part 2: Manufacturing systems optimization  

 Basic Concepts, Optimal approaches, Heuristic methods, Descriptive 

models 

Part 3: Case Study - Semiconductor Manufacturing System 

Modeling, Analysis and Optimization 

 Introduction to semiconductor manufacturing system, Release 

control, Dispatching methods, State of the Practice and Future Needs 

for Production Planning and Control Systems 



• Intel automation system (video) 



 Example: Semiconductor Wafer Fabrication Facility (Fab) 

 A semiconductor chip is a highly miniaturized, integrated electronic circuit 

consisting of thousands of components.  

 The whole manufacturing process may require up to 700 single process steps 

and up to 3 months to produce.  

Fig1.1  Stages of semiconductor manufacturing 



Fig1.2  Operations in a wafer fab 



•  Definitions 

•  Performance measures  

•  Single workstation factory models 

•  Processing time variability  

•  Multiple-stage single-product factory models 

•  Multiple-product factory models 

Chapter 1   Introduction to 

Factory Models 



1.1   Definitions 

 Definition 1.1:  A job is a physical entity that must be processed through the 

various processing steps or may be an order to begin the processing of raw 

material into a newly manufactured entity. 

 Definition 1.2: A factory consists of several machines grouped together by 

type (called workstations) and a series of jobs that are to be produced on 

these machines. 

-The workflow of a job moving through the factory: waiting in line at a machine 

(workstation) until its turn for processing → being processed on the machine → 

proceeding to the next machine location to repeat the sequence until all required 

operations have been completed. 



1.1   Definitions 

 Definition 1.3. A workstation (or machine group) is a collection 

of one or more identical machines or resources. 

-In a general manufacturing context, workstations are sometimes made up 

of several different machine types called cells where these machines are 

gathered together for the purpose of performing several distinct processing 

steps at one physical location. In order to model a cell type workstation, one 

would need to combine several single-machine workstations together. 

 Definition 1.4. A processing step for a job consists of a specific 

machine or workstation and the processing time (possibly 

processing time distribution) for the step. 

 



1.1   Definitions 

 Definition 1.5. The sequence of processing steps for a job is called its 

routing. Jobs with identical routings are said to be of the same job 

type; thus, different job types are jobs with different routings. 

 -The characteristics of all the job routings determine the organization of a 

manufacturing facility that is used to produce these jobs. 

A unique routing: an assembly line given a high enough throughput rate 

A few routings (a low diversity of job types) with each routing visiting a 

workstation at most one time: a flow shop 

A large numbers of different job routings (a high diversity of job types) so that 

jobs visit workstations with no apparent structure: a job shop 

A  given workstation could be visited in several processing steps with the same 

job routing: a re-entrant flow 



1.1   Definitions 

 Definition 1.6:  Cycle time  is the time that a job spends within a 

system. The average cycle time is denoted by CT. 

 CTs : the average factory cycle time, i.e., the average time that a job spends 

with the factory, either being processed at a workstation or waiting in a 

workstation queue. 

 CT(i): the average cycle time jobs spend being processed by workstation i (the 

ith grouping of identical machines) plus the average time spend in the  queue 

(or buffer). 

 CT(i)= CTq(i)+Ts(i) 

-CTq(i) denotes the average time a job spends in the queue in front of the workstation 

-Ts(i) denotes the service time (or processing time) at workstation i. 

 

 



1.1   Definitions 

 Definition 1.7.  Work-in-process is the number of jobs within a system 

that are either undergoing processing or waiting in a queue for 

processing. The average work-in-process is denoted by WIP. 

 Definition 1.8. The throughput rate for a system is the number of 

completed jobs leaving the system per unit of time. The throughput 

rate averaged over many jobs is denoted by th. 

 For most of the systems that we will consider, the long-run throughput rate of 

the system must be equal to the input rate of jobs.  

 Given that the throughput rate is known and there is enough capacity to 

satisfy the long term average demand, the higher the factory capacity relative 

to the needs, the faster jobs are completed. 



1.1   Definitions 

 Definition 1.9. The x-factor for a factory is the ratio of CTs to the average 

total processing time per job. 

 Diagram used to illustrate the nature of a modeled system will omit the 

system level structure and emphasize the internal structure of the model 

itself. The level of detail generally needed in diagrams will include 

workstations and job flow within the factory. 

   

Fig.1.1. Detailed diagram depicting the two machines in Workstation 1, a batch 

processing operation at Workstation 2, and individual processing on a single 

machine at Workstation 3 



1.2  Performance Measures  

 Measuring CT and WIP: record the number of arrivals and 

departures to and from the system 

 

Fig.1.2. Arrival A(∙) and departure D(∙) 

functions for a system in which arrivals 

and departures occur one at a time. 

Consider a time interval (a,b) such 

that the system starts empty and 

returns to empty. Let Nab be the 

number of jobs that arrive to the 

system during the interval (a,b). 

Number these jobs for 1 to N, with 

index i representing specific jobs.  



1.2  Performance Measures  

 The average cycle time, CT(a,b), for jobs during this interval is given by 

 

 

 Note: the area (AB) between the curves A(t) and D(t) for a<t<b is merely the 

summation given in the above equation. 

 The time-averaged number of jobs waiting in the system during the time 

interval (a,b) is given by 

  



1.2  Performance Measures  

 Conclusion: the mean number of jobs arriving to the system per 

unit time, normally denoted as λ, is Nab/(b-a). 

 

 This result is valid for any interval that starts with an empty system and 

ends with an empty system. 

 The relationship is the limiting behavior result, or long run average result, 

for stationary queuing systems, and is known as Little’s Law. 

 The result holds for individual workstations as well as the system as a 

whole.  



1.2  Performance Measures  

 Property 1.1. Little’s Law. For a system that satisfies steady-state conditions, 

the following equation holds 

WIP=λ×CT 

 where WIP is the long-run average number of jobs in the system, CT is the 

long-run average cycle time and λ is the long-run input rate of jobs to the sever. 

 Since the average input rate is usually equal to the average throughput rate, 

Little’s Law can also be written as WIP=th×CT. 

 

• It should be stressed that the limiting behavior generally 

estimates mean values and the actual underlying random 

variables for the systems can be quite variable. It is often 

desired that analytical models of these systems describe 

the steady state probability distribution.  
Fig.1.3. A representation of 

the number of jobs in a 

simulated factory 



 Example 1.1. Consider a factory that makes only one type of product. The 

processing requirements for this product consists of four processing steps 

that must be performed in sequence. Each processing operation is performed 

on a separate machine. These machines can process only one unit of the 

product at a time (called a job). The processing times for the four operations 

are constant. These processing times are 1, 2,1 and 1 hour(s) on each of the 

four machines, respectively. This idealized factory has no machine 

downtimes, no product unit losses due to faulty production, and operates 

continuously. The factory is operated using a constant number of jobs in 

process (i.e., WIPs (t) is constant for all t). When a job has completed its four 

processing steps, it is immediately removed from the factory and a new job is 

started at Machine 1 to keep the total factory WIPs at the specified level. This 

process is depicted in Fig.1.4. This factory is running smoothly at the current 

time. Management has set a constant WIPs  level at 10 jobs.  

 
Fig.1.4. A four machine serial 

flow production factory with 

constant service times and a 

constant WIPs level 



(1) Compute the throughput rate of the factory. 

(2) Compute the average cycle time and x-factor of the factory. 

(3) The average of this industry is currently running at 2.6 as reported in a 

recent publication by the industry’s professional journal. If the x-factor is 

high, it is difficult to keep customers when the industry on average 

produces the same product with a considerably shorter lead-time from 

order placement to receipt.  

Answers: 

(1) Simulate the factory operation. Start with the specified number of 10 jobs 

in the factory, all placed at Machine 1, and made hourly updates to each 

job’s status. After a short period of time, it accomplishes a throughput rate 

of th=0.5/hr jobs (leaving the factory), i.e., it produces one finished job 

every two hours on the average. This is the maximum throughput rate for 

this factory because its slowest processing step (at Machine 2) takes two 

hours per job.  Management is quite pleased with the throughput of the 

factory since it is at its maximum capacity.  

(2) The cycle time is currently running at 20 hours per job. Management feels 

like this is high since it takes 5 hours of processing to complete each job. 

The ratio of the cycle time to the processing time (i.e., x-factor) is 4. 

 

 

 

 



Table 1.1 Factory simulation with WIP=10, four single-machine workstations, and 

processing times of (1,2,1,1) for one 24-hour day using a time step of one hour; data 

pairs under each workstation are the number of jobs at the workstation and the 

elapsed processing time for the job bing processed. 



(3) To decrease x-factor is to decrease the cycle time.  

Firstly, management has been considering a large capital outlay to purchase a 

25% faster machine (1.5 hours) for processing step two. Then the x-factor 

decreases to 3.33 and the additional throughput of 0.166 units per hour. 

However, management has decided that this investment is not worthwhile. 

Secondly, management hired a consulting team from the manufacturing 

engineering department of a local university to perform a short term factory 

flow analysis study. 

Thirdly, the consulting team started to simulate the factory model. The team 

found a two-hour cyclic pattern. Every cycle of this pattern produced one 

completed job and the factory returned to the identical state for each machine 

and associated queue. This set of conditions is referred to as the factory status.  

Fourthly, the team used Little’s Law to make model analysis. 

 

Using a throughput rate of ½ jobs per hour, then cycle time is given by 

 

 

So a small x will be obtained with a less WIP. If WIP is 6, x is less than 2.6.  

 



Fig.1.5. Average cycle time as a 

function of the constant WIP level 

Fig.1.6. Average throughput rate as a 

function of the constant WIP level  

Table 1.2 Factory 

performance measures 

as a function of the WIP 

level 



 The simple throughput analysis of a serial factory does not necessarily yield 

accurate results when processing times are random. 

 Consider the four-step production system again. Now  instead of the constant 

processing time of two hours at workstation 2, let us assume that this time 

actually varies between 1 hour and 3 hours. 

 These situations occur at the machine with equal probability for a given job. 

 

 

 

 

 If the proportion of the time that the system is operating in a slow state is 

75%, one would expect a more accurate throughput rate estimate to be 

3/4(1/3)+1/4(1)=1/2 

This is the expected throughput rate for the stochastic system if the WIP 

level is at least the minimum of 4 jobs. 

 Notice the detrimental effect of the variability in the processing time; 

namely, a necessary increase in WIP and CT to maintain the same 

throughput rate. 

 In general, variability in workplace parameters always is detrimental in that 

it increases average work-in-process and cycle times.  

 

 

Table 1.3 Weighted average 

throughput rate results for the factory 

with Workstation 2 processing times 

of 1 and 3 hours, and constant WIP 

levels of 3,4 and 5.  

WIP 1 hour 3 hours Average 

3 3/4 1/3 13/24 

4 1 1/3 2/3 

5 1 1/3 2/3 



1.3 Single workstation factory models 

 For analysis on the steady-state system measures such as 

WIP and CT, it is useful to obtain the probability mass 

function (pmf) of the steady-state number of jobs in the 

system. 

 

 For notational purposes, define the random variable N as the 

number of jobs in the system and define pn as the probability 

that the number of jobs in the system is n, namely, 

pn=Pr{N=n}. 

 

 

 



 It is assumed that the arrival times and processing times  of  the jobs are 

subject to exponential distribution in the initial models. 

 

 

 

 

 

 Important assumptions 

 Job inter-arrival times are independent  of the status of the system. 

 Server will never be idle when there is a job in the system that can be served. 

 Server will be always busy processing jobs when there are jobs available for 

service. 

 Server will be only idle when there are no jobs available. 

 



1.3.1 First Model 

Consider a single server:  

 It is with a limited waiting area for nmax-1 jobs and one in the server 

position, i.e., a maximum of nmax jobs in the system. 

 Jobs arrive to the system one at a time with exponentially distributed 

inter-arrival times. Denoting the mean arrival rate as λ, the mean inter-

arrival time is 1/λ.  

 If the system is full, the arriving job is rejected; otherwise, the arriving job 

is accepted and processed in a first-come-first-serve order. 

 The processing time is also assumed to be exponentially distributed, with 

mean rate μ (the mean service time is 1/μ). 

It is assumed that a steady-state exists, i.e.,  the flow into and out of each 

state are balance. Develop the steady-state distribution of the number of 

jobs in the system. 

 

 



Analyze:  

 There are nmax +1 possible states, i.e., {0,1,…, nmax }, representing the 

number of jobs in the system. 

 Let pn denote the steady-state probability of n jobs in the system for 

n=0,…,nmax. 

  The steady-state flow into an intermediate state n (0<n<nmax) is made up 

of two components: 

 A new job’s arrival to the system that has exactly n-1 jobs 

 The completion of a job’s service when the system has exactly n+1 jobs 

 The steady-state flow out of an intermediate state n (0<n<nmax) is 

also made up of two components: 

 The completion of a job’s service when the system has exactly n jobs 

 The arrival of a new job to the system when there are exactly n jobs in the 

system prior to the arrival event. 

 The steady-state flow balance equation for an intermediate state n 

is 

 

 

inflow outflow 





Example 2.2. General Solution.  



Whenever the system is finite, there is the possibility that the system will be 

full and arriving jobs will be lost, hence, the actual rate of jobs that enter the 

system, λe may not be the same as the arrival rate, λ. 

Definition 2.1.  The effective arrival rate for a system is the rate at which 

jobs enter the system. For a workstation with constant arrival rate, λ, and 

with a maximum number of jobs at the workstation limited to nmax, the 

effective arrival rate is given by 

λe=λ(1-pnmax
) 

where pnmax
 is the probability that the workstation is full. 

A system at steady-state will have its system throughput rate equal to the 

effective arrival rate; that is, th=λe, and the use of Little’s Law must always 

use λe and not λ for the throughput. 



1.3.2 Diagram Method for Developing the Balance Equations 

 Partition the nodes into two subsets of 

nodes, then establish values for the 

appropriate steady-state probabilities to 

balance the flow between the two subsets. 



1.3.3 Model Shorthand Notation 

 The general form of Kendall’s notation is  

 



1.3.4. An Infinite Capacity Model (M/M/1)  

 The effective arrival rate (those jobs getting into the system) will 

necessarily be less than the system’s service capacity.  For a given 

M/M/1/3 system, 

 With λ=μ,  p0=…=p3=1/4, λe= λ(1-p3)=(3/4) λ< μ 

 With λ=2μ, p0=(1/2)p1=(1/4) p2=(1/8)p3, λe= λ(1-p3)=(7/15) λ< μ 

 With λ=3μ, p0=(1/3)p1=(1/9) p2=(1/27)p3, λe= λ(1-p3)=(13/40) λ< μ 

 Note that as the ratio of λ/μ becomes larger, the effective arrival rate 

approaches the inverse of this ratio but never reaches it.  

 The finite capacity systems have a built-in mechanism to adjust the arrival 

rate to a level (λe) that can be handled by the system service capacity. 

 If a system that has no realistic limit on the number of jobs allowed is 

considered, no steady-state exists. 

 The analyses of the unlimited queuing models result in conditions that 

establish the existence of the steady-state behavior for these model. 

 



 The formulation of the unlimited-jobs system 

 

 

 

 Using the cut partitions method for obtaining system of equations needed 

in defining the steady-state probabilities  









• Multiple Server Systems with Identical Service Rates 



1.3.5 Multiple Server Systems with Non-Identical Service Rates 

 











1.3.6 Using Exponentials to Approximate General Times 

 To model more general systems, one effective method is to approximate 

the general times by combinations of exponentials. 

 Erlang-k distribution, the sum of k independent and identical exponential 

distributions,  provides an excellent distribution to use for the expanded 

state modeling approach. 

 The non-negative random variable X has an Erlang distribution if there is a 

positive integer k and a positive number β such that the pdf of X can be written 

as 

 

 

 The Erlang-k distribution can be modeled as a serial k-node system, with each 

node referring to identical exponentials.  

 Erlang-k has a squared coefficient of variation given by C2=1/k, it also allows 

modeling of processes that have less variation than the exponential distribution.  

 



(1) Erlang Processing Times 

Consider a single server:  

 The number of jobs allows into the system is limited to three,  i.e., nmax 

=3. 

 Jobs arrive to the system one at a time with exponentially distributed 

inter-arrival times. Denoting the mean arrival rate as λ, the mean inter-

arrival time is 1/λ.  

 The processing time is described by and Erlang-2 distribution with  mean 

rate μ and thus mean service time is 1/μ. 

 The model is denoted by M/E2/1/3.  

This Erlang-2 distribution will be modeled using two exponential 

nodes (phases), where each node has a mean rate of 2μ. 

 Each individual node is exponential. 

 The service process will have two nodes representing the two phases of 

the Erlang-2 distribution. 

 



 To obtain the steady-state probabilities for this system, six cuts are 

placed so that the following node sets are isolated on one side of the cut 

The performance measures of 

WIP, CT and Throughput are 

computed from 



(2) Erlang Inter-Arrival Times 

 Jobs arrive to the system one at a time with Erlang-2 distribution λ.  

 The processing time is an exponential distribution with  mean rate μ. 

 The model is denoted by E2/M/1/3.  

 





(3) Phased Inter-arrival and Processing Times 

 

 

 

 Two-phase GE (GE2) 

 The first generalization is to allow for non-identical phases and second is to 

give a probability that the process is complete at the end of each phase. 

 The purpose is to develop modeling skills that have more flexibility in the range 

of inter-arrival and service time distribution. 

 GE2 results in a squared coefficient of variation C2 in the range [0.5, ∞)   

 













(2) Approximations for G/G/1 System 

 





(3) Approximations for G/G/c System 

 







1.4  Processing Time Variability 

 An approximation for the cycle time in a system queue (or waiting time in 

the queue for a machine) is denoted as  

 

 

 Reduce cycle time in the queue by reducing one of the variability components, 

Ca
2 or Cs

2 

 Reducing variability is equivalent to reducing the machine utilization by some 

factor with respect to the mean cycle time measure. 

 Reducing process variability is equivalent to finding extra capacity in the system 

since reduction of utilization with a constant arrival rate implies an increase in 

the mean processing rate. 

 



 To illustrate the equivalence between reducing variability and utilization, 

consider a single machine system with the following parameter values: 

Cycle time in the queue is reduced by 5%. 



 There are many factors that contribute to the variability of the 

length of the time that a job spends in processing. 

 Natural processing time variability. 

 Random breakdowns and repairs during processing- the variability of 

the time between breakdowns and the variability of the time to repair a 

broken machine. 

 Operator unavailability can induce random delays in the time a job 

spends “in control of ” a machine. 

 Job class setup and take-down times- the time caused by a job-type 

change on a machine. 

  



1.4.1 Natural Processing Time Variability 

 Consider a job with processing time random  variable, T, with known 

mean and variance parameters E[T] and V[T], respectively. It is assumed 

that T is made up of three separate (independent) sub-tasks. Hence, 

 

 

 

Additionally consider that these three sub-processes times are 

independent and identically distributed random variables so that  

 



The total processing time 

variability was reduced to 1/3 

of its original value, which 

reduced the associated 

workstation cycle time in the 

queue. Extra processing 

capability has found with a 

faster processing time. 



1.4.2 Random Breakdowns and Repairs During Processing 

 Several courses of action might result from the breakdown of a machine. 

 The job undergoing processing at the time of breakdown might not be 

recoverable (i.e., lost) 

 The job might require additional processing before resumption of 

“normal” processing 

 The job might not be effected by the breakdown and normal processing 

can resume immediately after the repair is complete (as if the 

breakdown never occurred). 

 Here we consider the two latter situations (for the second case the 

additional processing time need to resume service is included in the 

machine repair time). 



 Definition. The effective processing time, Te, refers to the time that a job 

first has control of the processor until the time at which the job releases 

the processor so that it is available to begin work on another job. 

 

 

T: the normal (uninterrupted) processing time random variable 

Ri: the repair time random variables 

N: the random number of failures during the service time T 



 Definition. The availability, a, of a processor that is subject to failures is 

the long-run average fraction of time that the processor is available for 

processing jobs. Processor availability is determined by 





 The inclusion of machine failure in the model results in over a three-fold 

increase in the mean waiting time. 

 Machine failures cause an increase the effective utilization factor. As the 

utilization factor approaches one, small changes in the factor will have major 

changes in waiting times. 

 Machine failures cause an increase in the service variability. 



1.4.3 Operator Variability 

 Operators are frequently required to setup a machine for each job. 

 If an operator is assigned to cover too many machines then system 

performance can be significantly degraded because of delays resulting from 

waiting for the operator to become available to perform the necessary job 

setups. 

 If a system has reasonable capacity, then the operator machine interaction 

problem does not significantly impact system performance. Thus, this level of 

detail is frequently omitted in system models. 

It is assumed that one job class is treated with two identical machines and one 

operator. A three-tuple (n, i, j) is used to represent the state of the system, 

where n denotes the number of jobs in the system and i and j indicate the status 

of the two machines.  There are three possible values for i and j: 0 indicates a 

machine has no job associated with it, s indicates that a machine has a job  “in 

setup”, and p indicates a machine has a job “in process”. 



For example: 

 State (1, s, 0): there is one job in the system and the operator is setting it 

up on a machine. 

 State (5, s, s): there are 5 jobs in the system with one job being set-up on 

a machine, another job waiting at a machine for the operator, and 3 jobs 

waiting in the queue for a machine. 

 State (7, p, p): there are 7 jobs in the system with both machines busy 

processing, 5 jobs queued, and the operator idle. 

 The state space representation for n≥2 is made up of three individual 

states: (n, s, s), (n, s, p), and (n, p, p). 



repeated 





 If the operator sets up too slowly or if the arrival rates are too fast for the 

processing times, the queues will build up continually and no steady-state 

is possible. Steady-state probabilities will exist if and only if the three 

parameter values are such that 









1.5  Multi-Stage Single-Product Factory Models 

 Linking several workstations together is necessary step towards more 

realistic factory models. 

 

 



 For general system configurations, there are two basic mechanisms that 

must be explored: 

(1) The merging of several input streams into  a workstation. 

(2) The separation or partitioning of a workstation output stream into several 

different streams for different target workstations. 

 

 

 

 

 

 

 We start with workstations in series and progress to more complex 

general network configurations.  



1.5.1 Approximation the Departure Process from a Workstation 

 How the workstation transforms the inter-arrival process characteristics 

into output-stream characteristics?  

 

 

 

 For M/M/c systems with c≥1, the output process is probabilistically 

identical to the input process; namely, the inter-departure times are 

exponentially distributed so that Cd
2=Ca

2=Cs
2. 

 For non-exponential systems 

 If the workstation is  extremely busy, Cd
2 would be expected to very close in 

value to Cs
2 . 

 If the system is very lightly loaded, Cd
2 would be expected to very close in to 

Ca
2 . 

 

 



 For an M/G/1 system, an conclusion proposed by Buzacott and 

Shanthikumar[3] is exactly the correct. 

 

 They also develop for the G/G/1 system a lower bound on Cd
2 as  

 

 A general relationship for a G/G/1 system for the squared coefficient of 

variation was developed by Marshall [4] as 

  



1.5.2 Serial Systems Decomposition 

 Consider a pure serial system with external inflow into the first 

workstation only and no branching. 

 The departures from each workstation are the inflows into the next 

workstation. 

 The system can be treated as a series of G/G/c/∞ queues with 

specified service parameters (E[Ts(i)], Cs
2(i), ci) for each workstation i, 

numbered from 1 to n. 

 The arrival stream for workstation i is the departure stream from 

workstation i -1, i.e., Ca
2(i)= Cd

2(i-1). 



 Burke[2] proved that the output for any  M/M/c/∞ system is a Poisson  

process with the same parameters as the input process but statistically 

independent of the input process. 

 The approach to modeling the network composed of M/M/c systems is to model 

each individual mode as if it were independent of all other nodes using as 

inputs to each node the same arrival process as to the first node. 

 Example 5.2 Consider a problem of patients in a emergency room. We 

would like to know the average number of patients within the facility at 

any one time and the average time that a patient spends in the 

emergency room.  

  

 
Poisson process with a 

mean rate of 4 

Exponential distribution 

of 4 minutes per patient 

(M/M/1) 

Patients A single clerk A triage nurse 

Exponential distribution 

of 10 minutes per patient 

(M/M/1) 

Two doctors 

Exponential distribution 

of 24 minutes per patient 

with a doctor(M/M/2) 
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Solution: 

 Arrival rate: λ=4.  

 Because E[Ta]=E[Td] (according to Property 5.1), M/M/c systems have 

exponential inter-departure times. 

 Since  each of the three nodes is an infinite capacity exponential system, 

the system can be analyzed as three independent single node systems. 

 The first node: u1=4/15, the average number of patients is WIP(1)=u1/(1-

u1)=4/11 

 The second node: u2=2/3, the average number of patients is WIP(2)=u2/(1-

u2)=2 

 The third node: u2=4/5, CTq(3)=                                        =42.67min, 

CT(3)=1.11hr 

    WIP(3)= λⅹCT=4.44 

 Thus, the total number in the emergency room is 

WIPs=4/11+2+4.44=6.8. The average value of the  total time a 

patient spends in the emergency room as CTs=1.7hr.  

 

 

 

 

 



 The analysis approach for general systems is based on the concept that a 

system’s performance can be adequately approximated by separating the 

system into individual workstations. 

 The performance characteristics of the individual workstations are computed 

separately and then these results recombined for the total system behavior. 

 This decomposition approach is fundamental to the approximation of general 

network configurations: 

 Property 5.2 is an approximation. 

 The successive inter-departure times are not independent except for the M/M/c/∞ 

case. 

 The parameter set required by the decomposition approach is (E[Ts(i)], 

Cs
2(i), ci , E[Ta(i)], Ca

2(i)) for each workstation i.  The first three parameters are 

specified data for the workstation. The last two ones are for the job arrival 

stream into the workstation, which need to be estimated from the departure 

flows from the upstream workstations. 

 



 The departure stream characteristics for each workstation consists of the 

mean inter-arrival time and the squared coefficient of variation of these 

times. 

 For a serial system in steady state, E[Ta(i)]=E[Ta(1)] for all workstations 

i=1,2,…,n (the assumption of no losses, no reworks, and one external inflow 

point).  

 Then compute Cd
2(i) according to following two properties. 

 



 Once the cycle times for the individual workstations have been obtained, 

the overall system performance measures can be determined by merely 

summing the individual workstation times. However, it is not a general 

computation scheme. 

 General computation scheme:  
The latter is assumed 

that all arrivals to the 

factory enter through 

the first workstation. 







1.5.3 Nonserial Network Models 

 Many production systems have more than one inflow point into the 

production system, such as the rework of the defective or broken jobs. 

 These rework jobs will not necessarily enter the production line at the same 

point as a new job. 

 If a defect is found during inspection after partially completing production, it 

may be sent to a rework station and then re-enter the production sequence at 

the appropriate point. 

 To study factory structures that are more realistic than pure serial 

systems, two additional structures must be studied: 

(1) the merging of streams entering a workstation; 

(2) the splitting of output streams that come from a single workstation but are 

routed to more than one workstation. 

 



1.5.3.1 Merging Inflow Streams 

 The process of merging inflow streams is technically called a 

superposition of the individual inter-arrival processes. 

 
Definition 5.1. A renewal process is the process 

formed by the sum of nonnegative random 

variables that are independent and identically 

distributed. If the random variables forming 

the sum are exponentially distributed, the 

renewal process is called a Poisson process.   





1.5.3.2 Random Splitting of the Departure Stream 

 Jobs that exit from a workstation can be transferred to different 

workstations based on several possibilities. 

 Multiple products can be made by specializing a partially processed product. 

 Quality control testing with good items continue on their normal route 

and bad ones being reworked or corrected at a different workstation 

before continuing normal processing. 

 Assume p is the probability that output from one workstation is directed as 

an arrival process to a second workstation, and N is the number of 

departures from the first workstation between arrivals to the second 

workstation. Thus, the probability mass function of N is given by 





Notice that as a check, the arrival rates can be summed and they must equal 

the departure rate from the original stream before it was split. Such a property 

does not hold for the squared coefficients of variations. 



1.5.4 The General Network Approximation Model 

 External flows into any one of the workstations, rework branches, splitting 

of the output from a workstation to different next workstations, etc.  

1.5.4.1 Computing Workstation Mean Arrival Rates 

 Consider a simple two workstation example. 

 

 

 

 

 Therefore, a system of linear equations established and solved can obtain 

the mean inflow rates for each workstation. To formalize for a general 

network application, the switching rule needs to be defined.   

 

 

 

Arrivals from an external source 

enter the first workstation with a 

mean rate of  γ. 

Feedback from workstation 2 

with probability β.  



 Definition 5.2. Consider a network consisting of workstations numbered 

from 1 to n. The switching rule for the network is defined by an n×n matrix 

P=(pij), where pi,j is the probability that an arbitrary job leaving workstation 

i will be routed directly to workstation j. The matrix P is called the routing 

matrix for the network. 

 Row i of the P consists of the probabilities relating to the splitting of the outflow 

from workstation i into the various resultant successor workstation j. 

 Column j represents the probabilities that jobs leaving the various workstations 

go to workstation j. 

 Define γi as the external inflow rate and λi as the total inflow rate into 

workstation i. Therefore, the total rate into workstation I must satisfy the 

following equation:   







1.5.4.2 Computing Squared Coefficients of Variation for Arrivals  

 





 The following is a summary of the solution procedure used to fully 

develop a general factory model, obtain the values of the unknown 

parameter sets, and derive the relevant performance measures.  



Step1: 

Step3: 

OR 

Step4: 

Step2: 

OR 

Step5: 

, CTs(G/G/c)=CTq(G/G/c)+ E[Ts]  





Step1: Workstation Arrival Rates 



Step2: Workstation Utilizations  



Step3: Squared Coefficients of Variation 

 



Step4: Decomposition 











1.6 Multi Product Factory Models 

 There are two basic principles to model multiple product facilities. 

(1) The workload on a workstation is the sum of all the visits multiplied by 

the processing time per visit. 

 Definition 6.1. The offered workload (or simply the workload) of a workstation is 

the total amount of work that is required of a workstation per unit of time. The 

workload is determined by the sum of the total arrival rate (per hour) for each 

product type multiplied by its associated mean processing time (in hours). For 

purposes of determining workload, when a specific product type revisits a 

workstation, it is considered as a separate product type. 

(2)  The job flow needs to be maintained by product type. That is, the 

number of visits to each workstation by product class is needed. Different 

products can have different probabilistic flows through the production facility 

as well as different processing time characteristics. 

 

 

 



1.6.1 Product Flow Rates 

 



 Example 6.1 Consider a four workstation facility that processes two 

products with each product arriving to the first workstation according to 

individual Poisson arrival streams, each at a rate of 5 per hour. 

 

 

 

 

 

 

 

 

 

 The average number of visits of Job Type 1 to Workstation 1 is 1.138, but that to 

the Workstation 2 is 0.8534. The most visited workstation by a single product type 

is the fourth workstation that has each job type 2 visiting it an average of 2.5 

times.  

 

Product 1 routing structure 

Product 2 routing structure 



1.6.2 Workstation Workloads 

 By Definition 6.1, the workload at Workstation k, WLk, is computed as the 

sum of the product visits multiplied by their respectively mean processing 

times; that is, 

 

where m is the total number of product types within the factory. 

 The utilization factor, uk, for Workstation k is then the workload divided by 

the available capacity; thus, 

 

 

where ck is the number of identical processors available at Workstation k 

to handle the workload. 





1.6.3 Service Time Characteristics 

 For Workstation k, the service time will be the random variable Ts(i,k) 

whenever Product i is being processed. The service time for an arbitrary 

job, independent of the job type, is the random variable denoted by Ts(k). 

In the long-run, the probability that a given machine at Workstation k will 

be processing a Type i job is λi,k/λk; thus, Ts(k) is a mixture of random 

variables since  

 

 

 

where m is the total number of product types within the factory. 

 

 

V[T]=E[T2]-E[T]2 

C2[T]=V[T]/E[T]2 

E[T2]=(1+C2[T]) E[T]2 

C2[T]=E[T2]/E[T]2-1 





1.6.4 Workstation Performance Measures 

 

 

 

 

 

 

 

As long as there is no priority being given to specific job types, all jobs 

experience the same queue; therefore, the mean cycle time within 

Workstation k by Job Type i is given as  

 











1.6.5 Processing Step Modeling Paradigm 

 It is necessary to keep track of not only the job location but also the visit 

number to the location 

 The mean and standard deviation of processing time may not be the same 

even if the same type of job visited the same workstation. 

 The switching probabilities may depend on both the job type and the visiting 

times to a workstation of the job. 

 To accomplish the job location control, a data description method is used 

that is based on the process step that the job is undergoing. 

 List the processing steps that a job must go through during the production 

process. 

 The information associated with each processing step includes the workstation 

being visited and the processing time characteristics.  



 Consider an example shown in Table 6.5. The product flow is 

deterministic 







1.6.5.1 Service Time Characteristics 

 

 









1.6.5.2 Performance Measures 

 Complete the factory analysis 

 Mean and squared coefficients of variation for the processing times of a 

workstation 

 Mean and squared coefficients of variation for the arrival streams to each work 

station 

 To obtain the system of equations that define these terms, the factory 

with multiple routing schemes will be converted to a similar factory with 

probabilistic routing by the following route matrix. 

 



or 








