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Class Introduction

 Time & Venue: Tuesday (3,4), C211

e Teaching Materials
e Manufacturing Systems Modeling, Analysis and Optimization (PPT)

e Manufacturing Systems Modeling and Analysis. Guy L. Curry, Richard M.
Feldman (Eds.), Springer, 2009

e Handbook of Memetic Algorithms. Ferrante Neri, Carlos Cotta, and Pablo

Moscato (Eds.), Springer, 2011

e Production Planning and Control for Semiconductor Wafer Fabrication Facilities-
Modeling, Analysis and Systems. Lars Monch, John W.Fowler and Scott J.Mason,
Springer, 2013

» Grading Procedures: Attendance (20%) + Final Exam (80%b)
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Main Contents

Part 1: Manufacturing systems modeling and analysis

e Performance measures, Introduction to factory models

Part 2: Manufacturing systems optimization

e Basic Concepts, Optimal approaches, Heuristic methods, Descriptive
models

Part 3: Case Study - Semiconductor Manufacturing System
Modeling, Analysis and Optimization

e Introduction to semiconductor manufacturing system, Release
control, Dispatching methods, State of the Practice and Future Needs
for Production Planning and Control Systems
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o Example: Semiconductor Wafer Fabrication Facility (Fab)
e A semiconductor chip is a highly miniaturized, integrated electronic circuit
consisting of thousands of components.

e The whole manufacturing process may require up to 700 single process steps
and up to 3 months to produce.
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Figl.1 Stages of semiconductor manufacturing
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Chapter 1 Introduction to

Factory Models

- Definitions

- Performance measures

- Single workstation factory models

- Processing time variability

- Multiple-stage single-product factory models

- Multiple-product factory models
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e Definition 1.1: A job is a physical entity that must be processed through the

™
1.1 Definitions

various processing steps or may be an order to begin the processing of raw

material into a newly manufactured entity.

Definition 1.2: A factory consists of several machines grouped together by
type (called workstations) and a series of jobs that are to be produced on
these machines.

-The workflow of a job moving through the factory: waiting in line at a machine
(workstation) until its turn for processing — being processed on the machine —

proceeding to the next machine location to repeat the sequence until all required

operations have been completed.

/
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1.1 Definitions

e Definition 1.3. A workstation (or machine group) is a collection
of one or more identical machines or resources.

-In a general manufacturing context, workstations are sometimes made up
of several different machine types called cells where these machines are
gathered together for the purpose of performing several distinct processing
steps at one physical location. In order to model a cell type workstation, one

would need to combine several single-machine workstations together.

o Definition 1.4. A processing step for a job consists of a specific

machine or workstation and the processing time (possibly

processing time distribution) for the step.

- /




4 ™
1.1 Definitions

e Definition 1.5. The sequence of processing steps for a job is called its
routing. Jobs with identical routings are said to be of the same job
type; thus, different job types are jobs with different routings.

-The characteristics of all the job routings determine the organization of a
manufacturing facility that is used to produce these jobs.

e A unique routing: an assembly line given a high enough throughput rate

°A few routings (a low diversity of job types) with each routing visiting a
workstation at most one time: a flow shop

*A large numbers of different job routings (a high diversity of job types) so that
jobs visit workstations with no apparent structure: a job shop

A given workstation could be visited in several processing steps with the same
job routing: a re-entrant flow

- /
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1.1 Definitions

e Definition 1.6: Cycle time is the time that a job spends within a
system. The average cycle time is denoted by CT.

e CT,: the average factory cycle time, i.e., the average time that a job spends
with the factory, either being processed at a workstation or waiting Iin a

workstation queue.

e CT(i): the average cycle time jobs spend being processed by workstation i (the
ith grouping of identical machines) plus the average time spend in the queue
(or buffer).

CT(i)= CT,()+T4(1)

-CT,(i) denotes the average time a job spends in the queue in front of the workstation

-T,(i) denotes the service time (or processing time) at workstation 1.
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1.1 Definitions

e Definition 1.7. Work-in-process is the number of jobs within a system
that are either undergoing processing or waiting in a queue for

processing. The average work-in-process is denoted by WIP.

e Definition 1.8. The throughput rate for a system is the number of
completed jobs leaving the system per unit of time. The throughput

rate averaged over many jobs is denoted by th.

v For most of the systems that we will consider, the long-run throughput rate of

the system must be equal to the input rate of jobs.

v Given that the throughput rate is known and there is enough capacity to
satisfy the long term average demand, the higher the factory capacity relative

to the needs, the faster jobs are completed.

- /
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o Definition 1.9. The x-factor for a factory is the ratio of CT, to the average

e Diagram used to illustrate the nature of a modeled system will omit the

™
1.1 Definitions

total processing time per job.

system level structure and emphasize the internal structure of the model
itself. The level of detail generally needed in diagrams will include

workstations and job flow within the factory.

WS 1 WS 2 WS 3

)
)

o
e W

Fig.1.1. Detailed diagram depicting the two machines in Workstation 1, a batch
processing operation at Workstation 2, and individual processing on a single
machine at Workstation 3 /
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1.2 Performance Measures

e Measuring CT and WIP: record the number of arrivals and

departures to and from the system

T7: the arrival time of the i job
T: the departure time of the " job
A(t) for t > 0:the total number of arrivals during the time interval [0, ]

D(t) fort > 0 :the total number of departures during the interval [0,7]

Consider a time interval (a,b) such
that the system starts empty and
returns to empty. Let N_, be the
[ s number of jobs that arrive to the

: system during the interval (a,b).
Fig.1.2. Arrival A(") and departure D(-)  Number these jobs for 1 to N, with

functions for a system in which arrivals  index i representing specific jobs.
\_and departures occur one at a time. %

arrivals

Cumulative number of jobs
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1.2 Performance Measures

» The average cycle time, CT(a,b), for jobs during this interval is given by

I Nf!.r:

M1 -T) .

ab j—1

CT(a.b) =

o Note: the area (AB) between the curves A(t) and D(t) for a<t<b is merely the
summation given in the above equation.

 The time-averaged number of jobs waiting in the system during the time
interval (a,b) is given by
-b

WIP(a,b) = (A(t) — D(r))dr .
b—ala
l
WIP(a,b) = AB and CT{(a,b)= —AB.
— 3 Nab
WIP(a,b) = N CTl(a,b)
(H‘-‘ ] T h —a el

- | /
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1.2 Performance Measures

e Conclusion: the mean number of jobs arriving to the system per

unit time, normally denoted as 4, iIs N, /(b-a).

WIP(a,b) =ACT(a,b) .
e This result is valid for any interval that starts with an empty system and

ends with an empty system.

e The relationship is the limiting behavior result, or long run average result,

for stationary gueuing systems, and is known as Little’s Law.

e The result holds for individual workstations as well as the system as a

whole.

- /
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1.2 Performance Measures

* Property 1.1. Little’s Law. For a system that satisfies steady-state conditions,

the following equation holds

WIP=AxCT

where WIP is the long-run average number of jobs in the system, CT is the
long-run average cycle time and 4 is the long-run input rate of jobs to the sever.

e Since the average input rate is usually equal to the average throughput rate,

Little’s Law can also be written as WIP=thxCT.

It should be stressed that the limiting behavior generally 5:
estimates mean values and the actual underlying random i’
variables for the systems can be quite variable. It is often

desired that analytical models of these systems describe " RTARECEGREENEREREOARESIT3585Y

. . Flg 1.3.A repﬂesentatlon of
the steady state probability distribution. the number of jobs in a

simulated factory

™

/




™~

 Example 1.1. Consider a factory that makes only one type of product. The
processing requirements for this product consists of four processing steps
that must be performed in sequence. Each processing operation is performed
on a separate machine. These machines can process only one unit of the
product at a time (called a job). The processing times for the four operations
are constant. These processing times are 1, 2,1 and 1 hour(s) on each of the
four machines, respectively. This idealized factory has no machine
downtimes, no product unit losses due to faulty production, and operates
continuously. The factory is operated using a constant number of jobs iIn
process (i.e., WIP, (t) is constant for all t). When a job has completed its four
processing steps, it is immediately removed from the factory and a new job is
started at Machine 1 to keep the total factory WIP, at the specified level. This
process is depicted in Fig.1.4. This factory is running smoothly at the current
time. Management has set a constant WIP, level at 10 jobs.

" flow production factory with
constant service times and a
new constant WIP, level

‘ » 1 ‘ J o ‘ ’{ : ‘ »{ . | ~out Fig.1.4. A four machine serial
'l \
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(1) Compute the throughput rate of the factory.
(2) Compute the average cycle time and x-factor of the factory.

(3) The average of this industry is currently running at 2.6 as reported in a
recent publication by the industry’s professional journal. If the x-factor is
high, it is difficult to keep customers when the industry on average
produces the same product with a considerably shorter lead-time from
order placement to receipt.

AnNswers:

(1) Simulate the factory operation. Start with the specified number of 10 jobs
In the factory, all placed at Machine 1, and made hourly updates to each
job’s status. After a short period of time, it accomplishes a throughput rate
of th=0.5/hr jobs (leaving the factory), i.e., it produces one finished job
every two hours on the average. This is the maximum throughput rate for
this factory because its slowest processing step (at Machine 2) takes two
hours per job. Management is quite pleased with the throughput of the
factory since it is at its maximum capacity.

(2) The cycle time is currently running at 20 hours per job. Management feels
like this is high since it takes 5 hours of processing to complete each job.
The ratio of the cycle time to the processing time (i.e., x-factor) is 4.

- /
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able 1.1 Factory simulation with WIP=10, four single-machine workstations, and\

processing times of (1,2,1,1) for one 24-hour day using a time step of one hour; data
pairs under each workstation are the number of jobs at the workstation and the
elapsed processing time for the job bing processed.
Time WS #1 WS #2 WS #3 WS #4 Cum. Thru.

0 (10.0) (0.0) (0.0) (0,0) 0

1 (9.0) (1.0) (0.0 (0.0) 0

2 (8.0) (2.1) (0,0) (0.0) 0

3 (7.0) (2.0) (1,0) (0,0) 0

4 (6.0) (3.1 (0.,0) (1,0) 0

5 (6,0) (3.0) (1,0) (0,0) 1

6 (5.0) (4.1) (0,0) (1,0) |

7 (5.0) (4.0) (1,0) (0.0) 2

8 (4.0) (5.1) (0.0) (1.0) 2

9 (4,0) (5.0) (1,0) (0.0) 3

10 (3.0) (6,1) (0,0) (1,0) 3

11 (3.0) (6,0) (1,0) (0,0) 4

12 (2,0) (7.1) (0,0) (1,0) 4

13 (2,0) (7,0) (1,0) (0,0) 5

14 (1,0) (8,1) (0,0) (1,0) 5

15 (1.0) (8.0) (1.0) (0,0) 6

16 (0,0) (9,1) (0.0) (1,0) 6

17 (1,0) (8.0) (1,0) (0.0) 7

18 (0,0) (9.1) (0,0) (1,0) 7

19 (1,0) (8,0 (1,0) (0,0) 8

20 (0.0) (9,1) (0,0) (1,0) 8

21 (1,0) (8.0) (1.0) (0,0) 9

22 (0,0) (9.1) (0,0) (1.0) 9

23 (1,0) (8,0) (1,0) (0.0) 10

NG 24 (0.0) 9.1 0.0 (1.0) 10 _J




/(3) To decrease x-factor is to decrease the cycle time. N

Firstly, management has been considering a large capital outlay to purchase a
25% faster machine (1.5 hours) for processing step two. Then the x-factor
decreases to 3.33 and the additional throughput of 0.166 units per hour.
However, management has decided that this investment is not worthwhile.

Secondly, management hired a consulting team from the manufacturing
engineering department of a local university to perform a short term factory
flow analysis study.

Thirdly, the consulting team started to simulate the factory model. The team
found a two-hour cyclic pattern. Every cycle of this pattern produced one
completed job and the factory returned to the identical state for each machine
and associated queue. This set of conditions is referred to as the factory status.

Fourthly, the team used Little’s Law to make model analysis.
CT = WIP/th.
Using a throughput rate of %2 jobs per hour, then cycle time is given by

CT WIP
CT =2 xWIP. P ——— e e
5 2.5
So a small x will be obtained with a less WIP. If WIP is 6, x is less than 2.6.

- /
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Fig.1.6. Average throughput rate as a

10

20 - 0.6 1
2
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) 15 g 0.4 —
E -
=
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0 > 0 |
T | [ |
0 2 4| 6 8 10 0 2
Constant WIP Level
Fig.1.5. Average cycle time as a
function of the constant WIP level function of the constant WIP level
wip Throughput Cycle Time x-factor
| 0.2 5 1.0
2 0.4 5 1.0
3 0.5 6 1.2
4 0.5 8 1.6
5 0.5 10) 2.0
6 0.5 12 2.4
T 0.5 14 2.8
8 0.5 16 3.2
0 0.5 | 8 3.6
0.5 () 4.0

I T | ;
4 6 8 10

Constant WIP Level

Table 1.2 Factory
performance measures
as a function of the WIP

level /




/"o The simple throughput analysis of a serial factory does not necessarily yielch
accurate results when processing times are random.

e Consider the four-step production system again. Now instead of the constant
processing time of two hours at workstation 2, let us assume that this time
actually varies between 1 hour and 3 hours.

» These situations occur at the machine with equal probability for a given job.

_ Table 13 Weighted average

13/24 throughput rate results for the factory
with Workstation 2 processing times
4 1 1/3 213 of 1 and 3 hours, and constant WIP
5 1 1/3 2/3 levels of 3,4 and 5.

» If the proportion of the time that the system is operating in a slow state is

75%0, one would expect a more accurate throughput rate estimate to be
3/4(1/3)+1/4(1)=1/2

This is the expected throughput rate for the stochastic system if the WIP

level is at least the minimum of 4 jobs.

e Notice the detrimental effect of the variability in the processing time;
namely, a necessary increase in WIP and CT to maintain the same
throughput rate.

* In general, variability in workplace parameters always is detrimental in that

\___itincreases average work-in-process and cycle times. )




4 R
1.3 Single workstation factory models

* For analysis on the steady-state system measures such as
WIP and CT7, it is useful to obtain the probability mass
function (pmh of the steady-state number of jobs in the

system.

* For notational purposes, define the random variable N as the
number of jobs in the system and define p, as the probability
that the number of jobs in the system is n, namely,
p=PRN=n}.

\ /




e It is assumed that the arrival times and processing times of the jobs are\
subject to exponential distribution in the initial models.

Exponential: The random variable X has an exponential distribution if there is a number A > 0

Ae 2 fors>0

such that the pdf of X can be writtenas  f(s) = { 0 lerwise

0 fors < 0,

Then its cumulative probability distribution is given by  F'(s) { R e O

and EiX]==—; VIX]= =5; C°[X]= d 5=1.
A A* E[X]*

e Important assumptions
» Job inter-arrival times are independent of the status of the system.
o Server will never be idle when there is a job in the system that can be served.

Server will be always busy processing jobs when there are jobs available for

service.

Server will be only idle when there are no jobs available.

- /




/1 .3.1 First Model A

Consider a single server:

e It is with a limited waiting area for n,_-1 jobs and one in the server
position, i.e., a maximum of n,__, jobs in the system.

» Jobs arrive to the system one at a time with exponentially distributed
inter-arrival times. Denoting the mean arrival rate as A, the mean inter-
arrival time is 1/A.

« [f the system is full, the arriving job is rejected; otherwise, the arriving job
is accepted and processed in a first-come-first-serve order.

* The processing time is also assumed to be exponentially distributed, with
mean rate y (the mean service time is 1/4).

It is assumed that a steady-state exists, i.e., the flow into and out of each
state are balance. Develop the steady-state distribution of the number of
jobs in the system.

- /




/Analyze: N

e There are n,_ +1 possible states, i.e., {0,1,..., n,_ }, representing the
number of jobs in the system.

* Let p, denote the steady-state probability of n jobs in the system for
mr=0,...,n,..

» The steady-state flow /nfo an intermediate state n (0<n<n,_,) is made up
of two components:
* A new job’s arrival to the system that has exactly /-1 jobs
* The completion of a job’s service when the system has exactly 77+1 jobs

* The steady-state flow ouf of an intermediate state n (0<n<n,_) is
also made up of two components:
* The completion of a job’s service when the system has exactly 77 jobs
* The arrival of a new job to the system when there are exactly » jobs in the
system prior to the arrival event.

* The steady-state flow balance equation for an intermediate state »
is inflow Apnt1+upnst =A+u)p, forn=1,-++ nga  Outflow

M

ip =Ap Ap, = M pn=1.
K Jl Pl 0 P B — | I‘ / ] 12} /
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Example 2.1. Specific Solution. Consider a facility with a single machine that is
used to service only one type of job. The company policy is to limit the number of
orders accepted at any one time to 3. The mean arrival rate of orders, A, is 5 jobs
per day, and the mean processing time for a job is 1/4 day (thus, the processing
rate is i = 4/day). Both the processing and inter-arrival times are assumed to be
exponentially distributed. These assumptions lead to the system of equations

4p1 —3Spo =0

S5po+4p2—(5+4)p =0
Spi+4ps—(5+4)p2 =
Sp2—4p3 =

pot+pit+p2t+p3=1.

We ignore the fourth equation and only use the first three equations plus the fifth
(norming) equation to obtain (po, p1, p2, p3) = (0.173,0.217,0.271,0.339) .

The number of lost jobs per hour is given by Ap3 = 5 x 0.339 = 1.695.
The percentage of server idle time 1s 17.3%.
The throughput rate equals 5 - 1.695 = 3.305 jobs/day.
WIP = E[N) = ¥ npy = 1x0.217+2x0.271+3 x 0.339 = 1.776 jobs,
\_ CT = WIP/th=WIP/(A(1 — p3)) = 1.776/3.305 = 0.537 days . Y
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ppr—Apg =0
Apo+upr—(A+p)pr =
Apir+ups—(A+p)pr =

Apr—ups =0

pot+tpr+p2tps=1.

Apir+ups = (A+p)p

¥

Ee

p3 = (A ||"'-J“_1 Po

3

(.’l)hju
iy — = 0 -
: T

=

(

B Example 2.2. General Solution.

pupr = Apo
;Lp =3
= — 0.
P T

A
I

92 = (A + 1) — Po——P0
p2 = ( e 2

— A )
pi=|7 | P

2

l = po+p1+p2+p3

)G

V=[]
P =y | ket

i+

A

1l

2

) +(

Apo+up2 = (A+u1)p
ups = (A+p)pr—Apo

A

)=

From here we can develop the measures of WIP = py +2p2 + 3ps, th= A(po+
p1+p2), and CT = WIP/th.

A
1]

2

)

A

™

L
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Whenever the system is finite, there is the possibility that the system will be
full and arriving jobs will be lost, hence, the actual rate of jobs that enter the

system, A, may not be the same as the arrival rate, A.

Definition 2.1. The effective arrival rate for a system is the rate at which
jobs enter the system. For a workstation with constant arrival rate, A, and
with a maximum number of jobs at the workstation limited to nmax, the

effective arrival rate is given by

A6=A(1 -pnmax)
where p, _ is the probability that the workstation is full.

A system at steady-state will have its system throughput rate equal to the
effective arrival rate; that is, #/=A_, and the use of Little’s Law must always

use A_.and not Afor the throughput.

- /
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1.3.2 Diagram Method for Developing the Balance Equations

& A A Partition the nodes into two subsets of
nodes, then establish values for the
appropriate steady-state probabilities to
balance the flow between the two subsets.

L Apr = um cut .
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1.3.3 Model Shorthand Notation

e The general form of Kendall's notation is

: . maximum
arrival service number —— queue
process / process / of servers POS: discipline

in system

Queueing symbols used with Kendall’s notation

Symbols Explanation
M Exponential (Markov) inter-arrival or service time
D Deterministic inter-arrival or service time
E; Erlang type k inter-arrival or service time
G General inter-arrival or service time
1,2,---,00 Number of parallel servers or capacity
FIFO First in, first out queue discipline
LIFO Last in, first out queue discipline
SIRO Service in random order
PRI Priority queue discipline
GD General queue discipline




/1 .3.4. An Infinite Capacity Model (M/MA)

™

The effective arrival rate (those jobs getting into the system) will
necessarily be less than the system’s service capacity. For a given
M/M/1/3 system,

o« With A=p, pF...=p~1/4, Ae= A(1-p)=(3/4) A<y
e With A=2y, p~(112)p~(1/4) p~(1/8)ps Ae= A(1-p)=(7/15) A< u
e With A=3y, p,~(113)p~(119) p~(1/127)p2 A= A(1-p)=(13/40) A< s

Note that as the ratio of A/ becomes larger, the effective arrival rate
approaches the inverse of this ratio but never reaches it.

The finite capacity systems have a built-in mechanism to adjust the arrival
rate to a level (A,) that can be handled by the system service capacity.

If a system that has no realistic limit on the number of jobs allowed is
considered, no steady-state exists.

The analyses of the unlimited queuing models result in conditions that
establish the existence of the steady-state behavior for these model. Y




» The formulation of the unlimited-jobs system

A A A A

Lo ) (1) (2) ([ 3

1 " u m

» Using the cut partitions method for obtaining system of equations needed

in defining the steady-state probabilities

Apo = Up P = %{F’U Pn = (i) po forn=0,1,.--.
Apt =ups B _ A g
P: = P .
Ap2 = Hp3 A +(i) +(i)u +~-+(’j—“)ﬁr +oee=1
p3 = EPI 7o " Po 1 Po " pPo =L
:q.j_'.?” = HPn+1 : |
Pn=4p o= 2 :
: n — Fn—1 A AT A
) . i (11E+(F) +ot () +~-)
Zp” =1,

n=>0
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The denominator is a geometric series that has a finite value if A /u < 1.

A
I

and the general solution to the steady-state probabilities is (given that A /u < 1)

By = (1 /l) (A) forn=0,1,---.
M \,"

The throughput rate per unit time for this system is A. The utilization factor u
for the server is obtained from

Il:l—po:]—(l—&):&.
uw) u

4L l
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The expected number of jobs in the system in steady-state is obtained by using the
derivative of the geometric series as follows:

wir =M = 3= $0(1-2) ()’

n=Af) n=I) M H

/1 oo A.. n—1

|
i
I
|
e R 4
Y T
= | >
R
T e
—
| -
=
o TR
| )

NGO

where N is a random variable denoting the number of jobs in the system. Using
Lattle’s Law, the expected time in system (the cycle time) C7; is given by

CWIR, 1§ I

=" B .
AT A=) m-a
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/l;‘.mmple . Consider a single server system with exponentially-distributed inter-
arrival times and exponentially-distributed service times (thus, this is an M /M /1
system). If 4 jobs per hour arrive for service (A = 4) and the mean service time is
I/5 hour (i = 5), then the utilization factor u (u = A /u) equals 0.8. The expected
number of jobs in the system, WP 1s

0.8
WIPF; = =4,
Y (1-0.8)
The cycle time in the system, C75, is
I - I hr
s 5_4 .

The cycle time in the system is the sum of the cycle time in the queue plus the
service time. Hence, CT, = 1 — 0.2 = 0.8 hr. The probability that the server is idle,
of course, equals the probability that the system is empty, po. This probability is

A
pg=1——=0.2.

u

The steady-state probability that there are n jobs in the system is given by

pa=02x%08" forn=0,1,++;
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« Multiple Server Systems with Identical Service Rates

A workstation may consist of multiple machines; however, in most models,
server or machine distinctions are not usually made. That is, if there are two ma-
chines available, then for ease of modeling it is usually assumed that these are 1den-
tical machines and that jobs are not split, but processed completely on one machine.
Under the assumption of identical machines, if one machine operates at a rate of
[, then n machines operate at a rate of nu, and the state diagram must be adjusted
accordingly. For example, suppose a workstation has three machines, then the ser-
vice rate when two machines are busy is 2u and whenever all machines are busy the
service rate 1s 3u; thus, the rate diagram 1s as below.

A M E" A
.-—”}:ﬂ- %-‘3__{:-;__-__%2 g %% fﬁf—_\
(nj (1) 2 L3, -
. TR AR TR
1 2p 3u 3u
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/1 .3.5 Multiple Server Systems with Non-ldentical Service Rates
State diagram for an M /M /2 /4 system with

non-identical servers, where u denotes the
rate of the faster machine and vy is the rate of

the slower machine

As betore, rny,y 1s the maximum number of jobs allowed in the system (here
nmax — 4) so that there will be a total of n,, + 2 possible states for this model.
In the identical server model, there were nmax + 1 possible states. The extra state
arises because we must know which machine is busy when there is only one job at
the workstation in order to know the service rate associated with the job in process.
When there are two or more jobs in the system, both machines are busy and no
distinction about the state needs to be made. Denoting the state (i.e.. the number of
jobs at the workstation) by n, one possible state space is the set {0, 1f, 15,2, 3,4},
where n = 1f indicates that one job is in the system and that job is being processed
on the fast machine and n = 1s indicates that one job is in the system and is being

kprocessed on the slow machine. -




The diagram for this non-identical server system is non-serial and thus there are several more
possibilities for the cuts. The actual cuts that are used in the final analysis must be chosen wisely
so that all probabilities are defined. For our set, we shall establish five cuts such that a cut is placed

immediately to the right of each node subset contained within the following set:

({0}, {0, 11}, {0, 1f, 1s}, {0, 1f, 15,2},{0,1f 15,2,3} }
thus producing the following five equations:

Apo = Ppig+YPIs
Apig =YpP2t+Ypis
Apigtipis =(y+u)p2
Apy =(y+H1)p3
Aps =(y+H)ps.
These equations, plus the norming equation, po+py+pis+p2+p3+pa=1

are six equations that can be solved to obtain the steady-state prababilities for this system.

- /




Example . An overhaul facility for helicopters is open 24 hours a day, seven days
a week and helicopters arrive to the facility at an average rate of 3 per day according
to a Poisson process (i.e., exponential inter-arrival times). One of the arcas within
the facility is for degreasing one of the major components. There is only room in the
facility for 4 jobs at any one time and there are two machines that do the degreasing.
The newer of the two degreasing machines takes an average of 8 hours to complete
the degreasing and the older machine takes 12 hours for the degreasing operation.
Because of the large variability in helicopter conditions, all times are exponentially
distributed. Thus, we have A = 3 per day, i = 3 per day, and y = 2 per day. The

system of equations become
3po—3pf—2pis
3pf—2p2—2p1s
3pi+3p1s —3p2
3p2—35p3
3p3—3Spy
pPo+pytpist+p2+p3+p4

The solution to this system of equations is

-

= ()
= ()

po=10.288, p ¢ = 0.209, p1s = 0.118, p; = 0.196, p3 = 0.118, p4 = 0.071 .

/




The average number in the system is obtained by using the definition of an ex-
pected value; namely,

WIP, = pis+P1s+2p2+3p3 +4ps = 1.356
and the average number in the queue is obtained similarly,
WIP, = p3+2ps = 0.259 .

Note that for the average number in the queue, ps 1s multiplied by 1 because when
there are 3 in the system, there is only 1 in the queue. Also, p4 is multiplied by
2 because when there are 4 in the system, there are 2 in the queue. Average cycle
times are obtained through Little’s Law as

WIP, 1.356
&, = = =0.486 d
B e Anll—0.070) W
WIP, 0.259
CT, = — =0.093 day .

he  3x(1-0.071)




4 A couple of other measures that are sometimes desired by management are the
number of busy processors (i.e., degreasers) and their utilization. The expected num-
ber of busy servers, £[BS], is 1.097, and is obtained as

E[BS) = 1p ¢+ 1pis+2p2+ 2P +2py = 1.097 .

The system utilization factor u 1s the expected number of busy servers divided by
the number of machines available
E|\BS
U= M = 0.5485 = 54.85% .
2
Our final calculation 1s to obtain the average time needed for degreasing. Be-
cause of the preference given to using the faster machine, we would expect the
average time to be closer to 8 hours than to 12 hours. To get an exact value, we take
advantage of the fact that the time in the system equals the time in the queue plus
service time

E[T] = CT, — CT, = 0.486 — 0.093 = 0.393 days = 9.4 hr.




/1 .3.6 Using Exponentials to Approximate General Times A

 To model more general systems, one effective method is to approximate
the general times by combinations of exponentials.

e Erlang-k distribution, the sum of & independent and identical exponential
distributions, provides an excellent distribution to use for the expanded
state modeling approach.

e The non-negative random variable X has an Erlang distribution if there is a
positive integer A and a positive number £ such that the pdfof X can be written
as

AL“-"L }I: IE—IE.-'H |5

. . o .53
ff"} — ﬁ'i'l:_,k_—[_]-l for s = 0, ‘L'|X| ﬁ .I-"r[}'i:l] j‘l

: ; I:':[I]— |

=
* The Erlang-A distribution can be modeled as a serial k-node system, with each
node referring to identical exponentials.

» Erlang-k has a squared coefficient of variation given by C?*=1/k; it also allows
modeling of processes that have less variation than the exponential distribution.

- /
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(1) Erlang Processing Times

™

Consider a single server:

e The number of jobs allows into the system is limited to three, i.e., 1,
=3.

» Jobs arrive to the system one at a time with exponentially distributed
inter-arrival times. Denoting the mean arrival rate as A, the mean inter-
arrival time is 1/A.

* The processing time is described by and Erlang-2 distribution with mean
rate  and thus mean service time is 1/u.

* The model is denoted by M E,/1/3.

This Erlang-2 distribution will be modeled using two exponential
nodes (phases), where each node has a mean rate of 2.

» Each individual node is exponential.

* The service process will have two nodes representing the two phases of

) rhetribhirihinan



A_- "(’113 (21‘) (a1 } Diagram for an M/E>/1/3 model where the
’ 4 N o -2 \'. o . . .
L \ ' a, ‘-\_\ : 1 state (n, 1) indicates that there are » jobs in the
{ o \ \’J ! l) \\_l.l 21 “ - < h o I romae
Rl S S T NS H system with the ™" service phase busy
-K i.' \\\_¢ \\_V
oy 0. CSBR A Y w N ax " g
| 12} A 2] 2 Ta2) 2R max + 1 states
N N g \.__ J

 To obtain the steady-state probabilities for this system, six cuts are

placed so that the following node sets are isolated on one side of the cut

) (1,2)}.4{(3

{ {0},{0,(1,2)},{0, (1, 1)} {0. (

Apo—2upia =0

A po +/1p|3 —2upn =0

(A +2u)pu —20p1a —2upyn =0
Apii+Apiz—2upxn =0

Apa +Apan—2upn =0
Ap2n+2up3i —2up3 =0

pot+pin+pi2tpua+pnt+piat+pn=1.

),(3,2)},{(3,2)} }

The performance measures of
WIP, CT and Throughput are
computed from

3
WIP, = ZH{F”] + pu2)

n—I1
th =24, = A(1 - p3; — p3a)
CT=WIR /A, .

/




(2) Erlang Inter-Arrival Times

» Jobs arrive to the system one at a time with Erlang-2 distribution A.

* The processing time is an exponential distribution with mean rate L.

e The model is denoted by E£,/M1/3.

{(1,0), (2,0), (1,1}, (2,1}, (1,2), (2,2), (1,3), (2,3} }.

Diagram for an £3/M/1/3 model where the state (i,n)
indicates that the arrival process is in phase i and there
are n total jobs in the system Piot+po+pnt+pa+prtpot p3t+pin=1.

-

2Ap10 = Up1

2Ap20 = 2A P10+ Up2i
(2A -+ p)pn = 2Apao+ upi2
(2A 4 ) par — 2Ap10 + up2
(2A +u)p12 = 2Apa1 + up13
(24 + u)p22 = 2Ap12 + upas

(24 -Hl)PH = 2Ap2n +2Apn

(A 4+ w)prs = 2AP13

/




g Example. Let A =5 jobs/hr and u = 5 jobs/hr, and the solution to the £, /M/1/3
system of equations is

P10 = 0.0687, p20 = 0.1358,
p11 = 0.1374 p21 = 0.1342
p12 = 0.1406 p22 = 0.1278 |
pi13 = 0.1534, p23 = 0.1022.

Some of the system performance measures are

WIF; = 0(p1o+ p20) + L(p11 + p21) +2(p12 + p22) + 3(p13 + p2) = 1.5751
u=pi+pa+prtpr+pi+pn=1-—(po+pn)=79.55%
th=A.=A—2Ap33 = xu=3.978 jobs/hr
CTy = WIP;/th=0.3960 hr .
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(3) Phased Inter-arrival and Processing Times

oA

A generalized Erlang with two phases, where the
)\,f, first phase always occurs and has a mean rate A,

and the second phase occurs with probability o
» and has a mean rate A, ‘

» Two-phase GE (GE))

e The first generalization is to allow for non-identical phases and second is to

give a probability that the process is complete at the end of each phase.

* The purpose is to develop modeling skills that have more flexibility in the range

of inter-arrival and service time distribution.

o GE,results in a squared coefficient of variation C,in the range [0.5, »)
2 I

. Ao , o ,
Elx] 7 EX|CX] 202X

| 2 " 1
Al A= —— , a=2(1-C%X)) thrjiﬂ'z[k']il_

\_ - E[X]C?x] E|X]| /

Al t'nr{"1|X| » 1
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oty ~M2 OA A2 OA A2 ¥ '
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5 %% % y
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A2 Ay

a}‘,l (l}»l

(1=, (1—0)A, e A,

State diagram for an GE>/E> /1/3 model, where a (n,i,4) indicates that there are
n jobs in the system with one job in arrival phase i and one job is service phase j




£.3.7 Single Server Model Approximations

(1) General Service Distributions

e The Pollaczek and Khintchine, or “P-K”, formula for WIP in an M/G/1

queuing system is given by

A
(H)Z ; ;\zasz
WIP = E[N]=—+

2
2(1-)

where N is the number of jobs in the system, A is the mean arrival rate, and

the service distribution has mean and variance give by 1/p and o2,

respectively.

| (i) FA‘o?
WIP,~WIP = A/ Ae=AforM/G[1 WIP; = E[N) ' :

5 E(I—ﬁ)

/
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¢ The P-K formula for the queue cycle time in an M/G/1 system is given by

A2 -2 2
() +A%0g
_ _wip, _ M

CTq—E[Tq ==

A

2A(1 ——

(1-2)
Where T, is a random variable denoting the time a job spends in the queue,
A is the mean arrival rate, and the service distribution has mean and

variance given by 1/p and o2, respectively.

, VI[T] |
C*[T] = > =
I l E{TJ: C.i.' |u {I.T :
Recall the results for the M /M /1 model are (9 ): ;
A +Ater
WIB(M/M/1) = —— and CT,(M/M/1) = CTy = =~
l1—u - A 2A (1 F)
2 ] s 2':'-.1_?
WIP,(M/M/1) -II—'—“-J.ml CT,(M/M]1) l" ET] (f‘:) +A%5
It -
A
1+C; M(I “)
CT,(M/G/1)= Y1CT,(M/M/1). | +C2 i
A 1
2 - 2 1—i EITi
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(2) Approximations for G/G/1 System

Property 3.3. The Kingman diffusion approximationforthe G/G/ | queueing

system s
C2+C?
2

CT,(G/G/1) = ( )CT,,(M/M/].),

where Cg and (3' are the squared coefficients of variation for the inter-arrival
distribution and the service time distribution, respectively.

2 2
CT.(G/G/1) ~ (C—Ji)( = )H[EHE[?;]-

2 ] — it

Example 3.6. Consider again Example 3.3 illustrating an M /M /1 system. For this
model, A = 4/hr and u = 5/hr yielding a utilization factor u = ().8. Since this was
an exponential system, we had C2 = C2 = 1 and E[T;] = 0.2 hr. Thus, the G/G/1
approximation is

B C2 4 C? u LaTX O8N
g AT D (e BTl ——= ) { == | 0.2 =08 hr.
CT(G/G/1) ( 2 )(I—u) T} ( 2 )(0.2)
- J




Example 3.7. Consider a G/G/ 1 system with inter-arrival times distributed accord-\
ing to a gamma distribution with mean 15 minutes and standard deviation 30 min-
utes, and with service times distributed according to an Erlang-4 distribution with
mean 12 minutes. Since the distribution of service times is Erlang, the initial temp-
tation may be to use the methodology of Sect. 3.6.1; however, because the arrival
times are not exponential, we are left with the G/G/1 results. The given data yields
the Tollowing parameters: A — 4/hr, g = 5/hr, C2 = 4, and C? = 0.25. Thus, this
example has the same mean characteristics of I*x.nmplp 3.6 vielding a utilization of
w — 0.8, but the arrival process has more variability and the processing times are
less variable. Using the Kingman diffusion approximation (Property 3.3), we have

, . C:4C? I 4+0.25\ /0.8)
CT,(G/G/]) = <—2——) (l > u)b[ 3 = (———2———) (02 0.2=1.7hr.

This cycle time is over twice a large as the exponentially distributed system result;
thus, the variability associated with non-exponential distributions can have a signif-
icant impact on the expected cycle time.

- /
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(3) Approximations for G/G/c System

Property 3.4. The Kingman diffusion approximation extended for a iwo-
server system is

B! C2L 2 u u :
ClGibyle (“"’z ) (1 _) (’i’:;:;;) EIL]

where u = AE|[T]/2 is server utilization. This approximation is exact for the
M /M /2 system.

Property 3.5. The Kingman diffusion approximation extended for a three-
server system is

C2+C? u 31
enioo= (52 (1) (i)

where u = AE[T}] /3 is server utilization. This approximation is exact for the
M /M /3 system.
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Property 3.6. The Kingman diffusion approximation extended for a multi-
server system Is

A2/ yV2c+2-1
crcram (£42) (2222 o

2 c(l —u)

where u = AE|[T| /¢ is server utilization.

Finally, we repeat the obvious rule for system cycle time (3.19) extended to a
multiple-server system that holds whenever service is one-at-a-time:

CTy(G/G/c) =CT,(G/G/¢) + E[T;] .

™~




/Example 3.8. Consider again the system of Example 3.7 except for a two-server
system and with a mean service time of 24 minutes. Thus, server utilization stays
the same (namely, u = 0.8) and the squared coefficients of variation are still given as
C? =4 and C? = 0.25. Then the expected system cycle time using the approximation

of Property 3.6 is

0
eroro = (52 (45 o

= 1.4 It

If we use Property 3.4, the approximation becomes

ﬁ 44025\ [/ 0.8 0.8
CTAGrOL2) ™ ( 2 ) (I —0.8) (1-1-0.8)0'4

= L3l hE.

-

A simulation of this system yielded a mean cycle time in the queue of 1.63 hr with
a half-width of +0.01 hr for the 95% confidence interval. u

™

/
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4 Processing Time Variability

e An approximation for the cycle time in a system queue (or waiting time in

the queue for a machine) is denoted as

L u
crcta =G4 (14 Yot

* Reduce cycle time in the queue by reducing one of the variability components,
Clor CS
» Reducing variability is equivalent to reducing the machine utilization by some

factor with respect to the mean cycle time measure.

» Reducing process variability is equivalent to finding extra capacity in the system

since reduction of utilization with a constant arrival rate implies an increase in

the mean processing rate.

- /
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* To illustrate the equivalence between reducing variability and utilization,

consider a single machine system with the following parameter values:

o= (1+1)/ 08
-1 o _ 1 - -
; » = (I ; q)’z he =8 hr.
=08 2 :
E[T}) = 2hr.

Cycle time in the queue is reduced by 5%.

2 | —0.8

| +09)/ 0.8
=09 W f:_."f;;-—( | }( )’Ehr_?’.ﬁhr

2 | —u

Now a 50% reduction in the service time variability for this example data would
reduce the cycle time measure to 6 hours. The equivalent machine utilization factor
for 6 hours given the original system parameters is 0.75. This is a reduction in uti-
lization, or the mean service time, of 6.25%. Either of these changes would result in
a cycle time in the queue of 6 hours which is a 25% reduction from the original 8

k hours. /

. 141
if C? was not changed Lt ( - )2 = 7.6, u = 0.7917.
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e There are many factors that contribute to the variability of the
length of the time that a job spends in processing.

e Natural processing time variability.

 Random breakdowns and repairs during processing- the variability of
the time between breakdowns and the variability of the time to repair a
broken machine.

e Operator unavailability can induce random delays in the time a job

spends “in control of ” a machine.

e Job class setup and take-down times- the time caused by a job-type

change on a machine.
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1.4.1 Natural Processing Time Variability

e Consider a job with processing time random variable, 7, with known
mean and variance parameters £ 7] and 7], respectively. It is assumed
that 7is made up of three separate (independent) sub-tasks. Hence,

E[T| = E[T|] + E[I;] 4 E[ T3]

V[T] = V[T + V|G + V(D]

{:2 lT]' — 4 “]

Additionally consider that these three sub-processes times are

independent and identically distributed random variables so that

E[T] = 3E[T}] E[T] !-:%"—]
V[T]| = 3V|[Ti] V[T ! |:|
2 VI V[T|/3 2 .
(,'—[.",']_ - s ENTY = ITL, fUT!'II,E,S.
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Example 4.1. Consider a natural processing time that is exponentially distributed
with a mean time of 3 hours. Thus, the squared coefficient of variation C*[T7] is equal
to one. Now further assume that this job consists of three distinct but identically
distributed sub-tasks. Then these sub-tasks have processing times random variables
7; that have distributional parameters E[7;| = 1 and V[T;| = 3, for each i, by the
above analysis. -

After further study of the three sub-tasks, it is found that the variability of each
task can be substantially reduced and the resulting times are i.i.d. exponentially
distributed times each with a mean of one hour. (It is assumed that these variabilities
can be reduced while the mean processing times remain unchanged.) Thus, C?[T}] =
1, for each sub-task i. The impact on the variability of the total processing time
random variable T is significant. The parameters are now
EX] = %: E’[X}=%; c%}f}:é“rfi: . 3

A > E[T]=ZE[TA=3
i=1

The total processing time
variability was reduced to 1/3 3

V[7}] = of its original value, which V[T] = EV[Ti] — 3
reduced the  associated i1
workstation cycle time in the %

217 — - 3

C‘lL] = 1 queue. Extra processing C2[T] = —=1/3

capability has found with a 32 o

K faster processing time. /

E[T) = 1
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1.4.2 Random Breakdowns and Repairs During Processing

» Several courses of action might result from the breakdown of a machine.

e The job undergoing processing at the time of breakdown might not be

recoverable (i.e., lost)

e The job might require additional processing before resumption of

“normal” processing

e The job might not be effected by the breakdown and normal processing
can resume immediately after the repair is complete (as if the

breakdown never occurred).

» Here we consider the two latter situations (for the second case the

-

additional processing time need to resume service is included in the

machine repair time).

/




o Definition. The effective processing time, T, refers to the time that a job
first has control of the processor until the time at which the job releases

the processor so that it is available to begin work on another job.

N
T.=T+ ) R
=1

T: the normal (uninterrupted) processing time random variable
R: the repair time random variables

N: the random number of failures during the service time 7
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/- Definition. The availability, a, of a processor that is subject to failures is
the long-run average fraction of time that the processor is available for
processing jobs. Processor availabilify is determined by
e E|F,]
ER]+E[R]

where Fi.F>,--- and R|.R», - -+ are i.i.d. random variables representing suc-
cessive failure times and successive repair times, respectively, for the proces-
sor.

Hopp and Spearman developed an expression for the mean and variance of the
effective service time for processors that are less than 100% reliable under the
assumption that failures are exponentially distributed:

»  (14+C%RiDa(l —a)E[R]

E[T] ? 5
=, t=C"Te| = Cy 4 —
. and C; 7| <+ ET]

E[T.] =

when 7, and C? are used in place of 7; and C7 the formula gives an exact
expression for the mean waiting time in the queue for a workstation described
byan M /G/1 system subject to exponential failures. Forother G/G/c systems,

_ it serves as an approximation. Y,
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xample 4.2. Consider a single workstation with jobs arriving according to a Pois-\
son process (i.e., exponential inter-arrival times) with an average time between ar-
rivals of 75 minutes. Initially we ignore the fact that the machine at the workstation
is not 100% reliable and observe that the normal processing time is described by an
Erlang type-3 distribution with mean of 58 minutes; thus, C, = 1, E[T;| = 58 min,
Cs=1/3,and u = 58/75 = 0.7733. These parameters used in (4.1) yield CT, = 132

min.
G+ ( u

CT(G/G/1) = = —

) E[T)

After presenting these results, we are told that the processing machine 1s not com-
pletely reliable. The time between machine breakdowns is exponentially distributed
with a mean time of 3 hours measured according to machine processing time and
does not include idle time. The repair time is distributed according to a lognormal
distribution with a mean time of 30 min and a standard deviation of 15 min yielding
a squared coefficient of variation of 0.25 for the repair time. The availability is thus

given by
N E[F] | .
E[R|+E[R)] 3+41/2

- /

=(.85714 .

a




/ The mean of the effective processing time is \

-
E|T,| = p

and the squared coefficient of variation for the effective processing time is

» _ ope 2, (L+C*Ri])a(l —a)E[R]

(1+0.25)(0.85714)(1 — 0.85714)(30)
58

= 67.67 min ,

=0.4125.

le]_—i--

u=67.67/75= 0.9023
(14+0.4125) ( 0.9023

Clg= 2 1 —0.9023

) 67.67 min = 441 min.

e The inclusion of machine failure in the model results in over a three-fold
increase in the mean waiting time.
e Machine failures cause an increase the effective utilization factor. As the

utilization factor approaches one, small changes in the factor will have major
changes in waiting times.

K * Machine failures cause an increase in the service variability. /
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4.3 Operator Variability

» Operators are frequently required to setup a machine for each job.

e If an operator is assigned to cover too many machines then system
performance can be significantly degraded because of delays resulting from
waiting for the operator to become available to perform the necessary job

setups.

» If a system has reasonable capacity, then the operator machine interaction
problem does not significantly impact system performance. Thus, this level of

detail is frequently omitted in system models.

It is assumed that one job class is treated with two identical machines and one
operator. A three-tuple (n, / )) is used to represent the state of the system,
where n denotes the number of jobs in the system and /and jindicate the status
of the two machines. There are three possible values for /and j O indicates a
machine has no job associated with it, s indicates that a machine has a job “in

etup”, and pindicates a machine has a job “in process”.

™

/
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For example:

« State (1, s, 0): there is one job in the system and the operator is setting it

up on a machine.

» State (5, s, s): there are 5 jobs in the system with one job being set-up on
a machine, another job waiting at a machine for the operator, and 3 jobs

waiting in the queue for a machine.

« State (7, p, p): there are 7 jobs in the system with both machines busy

processing, 5 jobs queued, and the operator idle.

 The state space representation for 722 is made up of three individual

states: (n, s, s), (n, s, p), and (n, p, p).

{(0,0,0},(1,5,0),(1,p,0).(2,5,5),(2,5,p), (2, p, ), (3,5,5), (3,5, p), (3,p,p),---}

- /




/ The inter-arrival time, setup time, and service time distributions are all assumed
to be exponentially distributed. The mean rates for these three processes are denoted
by A, y. and u, respectively. Note that if both machines are processing (indepen-
dently), the mean output rate for the system is 2. If both machines are being setup,
the mean sctup rate is ¥, not 2y, because there is only one operator. The equations
relating the steady-state probabilities for this system are:

AP0,0,0) = HP(1,p.0)
(A + Y)P(1,50) = AP0,0,0) + HP(2,s,p)
(A + H)P(1,poy = YP(1,5,0) T 2UP 2 p p)
(A + 2“)1’(2,[),1)) = YP(2,5,p)
(A +7Y)P2ss) = AP(1,5,0) T HP@3.s.p)

(A +yY+U)p2sp) = AP1,p0) +YP2ss) T 20P3E,p.p)
(A +21)PE.p.p) = AP2p.p) +YPGsp)

(A' + Y)p(f%,s,s) — A'p(Z,s,s) + HPa s p)

(A+yY+)P3sp) = AP@2s,p) +YPB.ss) T 2P, p p) repeated
(A +21)P@ppy = AP@Epp) T VPG sp)

(A‘ + 'Y)p(n,s,s) — lp(n— 1,5.5) + MP(n+1.5p)
(A+y+u )p(n,s,p} = ’lp(n— Ls.p) T ¥Pnss)t Zup(n-i-l,p,p)
(A' n i 2“)p(n+l,p,p) = )"p(n.p.p) T YPini1.s.p)

Kplus the norming equation., which is the sum of all probabilities equal to one. /




/" To be more specific, we first observe that p(y , 0y = (A /1) p(0.0.0)- The the second\
through fourth equations can be rewritten in matrix form as

; P(1.5,0)
P(2.s.p)

i P(2.s.)
PBsp) | =
LP(3,p.p) .

—(A+y)H 0
y 0  2u
] 0 Y —(A+

with its solution given by

[ —(A +7)

= Y
0

LP(2,pp)

[ —(A+7) 1
Y 0

1]
0
Y

—(A+2p) |

0
2u

0 y—-(A+2u)

i P(1,s,0)
P(2.s.p)

LP(2,p.,p) .

0
2u

[ —AP0.00)

(A +N)P(|,p,0) )

0

—Apmnm
(A +M)p1,p0)
0

e

—A'p(l,s.(')

APap0)— (A +1+Y)P2sp)

AP@2.pp)

Qlus the norming equation, which is the sum of all probabilities equal to onc.

Once the values of the probabilities (p(; s ), P(2.5,p)> P(2,p,p)) have been obtained, the
vector (P(a.s,5)s P(3.5,p)s PG3.p,p)) 18 solved similarly using the fifth through seventh
equations in the system. This solution is written as

/




(e - N

i Pns.s) 1 [ — (A- T Y) M 0 i F _;tp(n ~1.,5,5) i
p(nlr Ls,p) | — Y 0 2“ "{'p(n—l,.v,p) = (A + U+ Y)p(n,s,p}
_p{n—}—l,p,p] I L 0 Y _(A " 2“) " " Ap[n,p,p) J

Notice that the solution to each system always involves the same inverse which
greatly simplifies the computational burden of the process.

 [f the operator sets up too slowly or if the arrival rates are too fast for the
processing times, the queues will build up continually and no steady-state
is possible. Steady-state probabilities will exist if and only if the three

parameter values are such that

2utney
2u+2uy+7°




Example 4.3. To illustrate the methodology and computations, consider a two- N
machine system with one server. Let the mean arrival rate of jobs be 1 per hour,
the mean time to perform a setup by 15 minutes, and let the mean processing time
be 90 minutes. Recall that all the times are exponentially distributed. Thus, A = 1,
y = 4, and u = 2/3. The matrix that needs to inverted, and its inverse, are

-1

~A+y)u O ~0.1622 0.0473 0.0270
vy 0 2pu — | 0.2838 0.3547 0.2027
0 7 —(A+2u) 0.4865 0.6081 —0.0811

Now setting p(g.0,0) to 1.0 yields p(; 0y = 1.5. Using (4.8), the first set of three
probabilities are

(p(l,s,O).p[Z.s,p)?p('.!,p,p)) = (0.2804,0.6030, 1.0338) .
From these values, (4.9) is used to evaluate the next three probabilities

(P2.s,5): P(3op) PBpp)) = (0.1082,0.3910,1.1133) .
The probabilities (p(3s.s)s P(4,5.p),P(4,p,p)) @r€ Obtained based on these previous values

(P(3.5.5)s Plas.p).Pid,pp)) = (0.0637,0.3156,1.0182) .

/
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epeating obtain

(p(4,$,s)?p(S‘s,p].p{S.p.p)) = (0048902713090'4) -
(p(S,s,s)ap(b,s,p},p(b,p,p)) = (0‘041330'236730-7921) )

(p(lél,s,s)'p(lS,.\',p),p(IS,p,p)) = (001 10,0.0635,0.2129)..

Stopping at this point, these probabilities sum to 15.288. Dividing all of thesc
probabilities by 15.288 yields an approximate solution (o this system. It is obvious
that since the probability p(;s , ) is not very close to zero, that this truncated so-
lution will not be very close to the unlimited system solution. In fact using these
probability values, the estimate for the mean number of jobs, Ny, in the system 1s

WIP = E[N;) =5.606. n=20, WIP=6.399, n= 60, WIP =7.658,
n=230, WIP=17.263, n=7170, WIP="1.779,

As the number of probabilities 40, WIP —7.603. n=80, WIP=7.783,
obtained is increased, expected 50, wip =17.725, n=90, WIP =17.785,
system WP, converges. n=100, WIP =7.785.

o Y,




The truncated system solution changes very little as more probabilities are added\
beyond the first 80 probabilities. Thus, a reasonable solution to the unlimited system
has been obtained. The expected cycle time in the system from Little’s Law is

CT =WIP/A =7.785hr.
The expected number of jobs in the operator system is
L X (p(l.s.(]) s 2 p(n,s.p)) +2 X Z Pinss) = 0.2819,

n=2

with the probability that the operator is idle being

P000) T PUp0)+ X Pinpp) =075,

n=2

and the machine utilization factor being

1 >0 L+ )
2" (P(l.p.m 2 p(m,p)) +1% X, Poup.p) = 0-8909.

n=2 n=2




/1 .5 Multi-Stage Single-Product Factory Models

™

e Linking several workstations together is necessary step towards more

realistic factory models.

Property 3.3. The Kingman diffusion approximation for the G/G/ 1 queueing
system is

2 2
€5 -LhEs

CT,(G/G/1) =~ ( )CT,,(M,/M/: ),

. e o : Er -
where C ‘2, and C; are the squared coefficients of variation for the inter-arrival
distribution and the service time distribution, respectively.

Property 3.6. The Kingman diffusion approximation extended for a multi-
server system is

C2 42\ [ uV2et2!
CT(G/Gle) ( : 1’—4) ( )E[m ,

(1 —u)

-—

K where u = AE[T; [c is server utilization.
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-

must be explored:

» For general system configurations, there are two basic mechanisms that

(1) The merging of several input streams into a workstation.

(2) The separation or partitioning of a workstation output stream into several

different streams for different target workstations.
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» We start with workstations in series and progress to more

™

complex
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1.5.1 Approximation the Departure Process from a Workstation

™

How the workstation transforms the inter-arrival process characteristics

into output-stream characteristics?

Property 5.1. The mean arrival rate of jobs to a workstation operating under
steady-state conditions equals the mean departure rate of jobs; that is

ElTa] e E{T;IJ .

For M/M/c systems with c21, the output process is probabilistically
identical to the input process; namely, the inter-departure times are

exponentially distributed so that C/~=C_*=C2.

For non-exponential systems

« If the workstation is extremely busy, C7would be expected to very close in

valueto C2.

« If the system is very lightly loaded, C7would be expected to very close in to/

e~ )



/- For an M/G/1 system, an conclusion proposed by Buzacott and\
Shanthikumar[3] is exactly the correct.
Ci(M/G/1) =1 —1® + u*C?
» They also develop for the G/G/1 system a lower bound on C7 as
Ci(G/G/1) > (1 —u) (1 —|—HL'§) C2 +u*C?
* A general relationship for a G/G/1 system for the squared coefficient of

variation was developed by Marshall [4] as

ff_, : { = EH f EH{| H}f"?;”-"'f*_.'l?l;.|
CT, ((C24+C2)/2)uE|T;] /(1 — u)
Property 5.2. The squared coefficient of variation of the inter-departure times
for a single server workstation can be approximated by

2 o LIS, 2
2(G/G/1) = (1 —u?) CE+uC?
and for multiple server workstations by

' 9 ) C" /e —1
CHG/G/c) ~ (1~ u?) C2 +u? =2 ‘

V(

\_ where u = E|T;] [ (c E[Ta})- )




/Ii.\'ample 5.1. For a single server workstation, the inter-arrival distribution pur;un\
eters are E[T,] = 20 min and C2 = 1/2. The service time distribution parameters
are E[T;| = 15 min and C? = 1/3. Then A = 3/hr and p = 4/hr. Thus, the system
utilization factor u = A /u = 3 /4. Using Property 5.2, the approximate value for the
squared coefficient of variation of the inter-departure times is given by

{1 (3Y VLo (3) 12 B _g 40605
e=\Y"\q) |3 T\a) 3=

1.5.2 Serial Systems Decomposition

J

®

=

 Consider a pure serial system with external inflow into the first
workstationonlyandnobranc -+ - » — s |

 The departures from each workstation are the inflows into the next
workstation.

e The system can be treated as a series of G/G/c/» queues with
specified service parameters (E[7(})], C2(), c) for each workstation
numbered from 1 to n.

 The arrival stream for workstation / is the departure stream from
\_  workstation /-1, i.e., C.2()= CA(1). %




™

o Burke[2] proved that the output for any M/M/c/~ system is a Poisson
process with the same parameters as the input process but statistically
independent of the input process.

* The approach to modeling the network composed of M/M/c systems is to model

each individual mode as if it were independent of all other nodes using as

inputs to each node the same arrival process as to the first node.

« Example 5.2 Consider a problem of patients in a emergency room. We
would like to know the average number of patients within the facility at
any one time and the average time that a patient spends in the

emergency room. _ _
Patients Asingle clerk A triage nurse Two doctors

» v s v s FIN

Poisson process with a Exponential distribution Exponential distribution  Exponential distribution
mean rate of 4 of 4 minutes per patient of 10 minutes per patient of 24 minutes per patient
(M/M/1) (M/M/1) with a doctor(M/M/2)



http://cn.bing.com/images/search?q=%e7%97%85%e4%ba%ba%e6%8e%92%e9%98%9f&view=detailv2&&id=8B47205B4F330A1817EB682B5DB0AE3B0147CCCE&selectedIndex=57&ccid=SFoCHWjz&simid=608042013093660744&thid=OIP.M485a021d68f3b42a85a95736ac054f8ao0

/Solution: \

e Arrival rate: A=4.

 Because ATJ=£T7,] (according to Property 5.1), M/M/c systems have
exponential inter-departure times.

» Since each of the three nodes is an infinite capacity exponential system,

the system can be analyzed as three independent single node systems.

e The first node: v~4/15, the average number of patients is WIP(1)=u,/(1-

u,)=4/11

e The second node: u~2/3, the(c};;c&) (zi(:?;)‘) E[T.\ﬂ]’ patients is WIP(2)=u/(1-
U,)=2

 The third node: u~4/5, CT(3)= =42.67min,
C7(3)=1.11hr

WIA(3)= Ax CT=4.44

. Thus. the. tofal ber in )




)

a’

system’s performance can be adequately approximated by separating the

The analysis approach for general systems is based on the concept that

system into individual workstations.

The performance characteristics of the individual workstations are computed
separately and then these results recombined for the total system behavior.

This decomposition approach is fundamental to the approximation of general
network configurations:
* Property 5.2 is an approximation.

* The successive inter-departure times are not independent except for the M/M/c/~
case.

The parameter set required by the decomposition approach is (£ 745],
C2(), c;, ATL)], CA(J)) for each workstation /. The first three parameters are
specified data for the workstation. The last two ones are for the job arrival
stream into the workstation, which need to be estimated from the departure

/

flows from the upstream workstations.




* The departure stream characteristics for each workstation consists of the
mean inter-arrival time and the squared coefficient of variation of these

times.

 For a serial system in steady state, AT7()=£T,1)] for all workstations
i=1,2,...,n (the assumption of no losses, no reworks, and one external inflow
point).

Tkﬁ“ A A I‘A ﬁ 7IA AAAA'A:“H ‘A ‘AIIAII':&A ‘IIIA nnnnnn‘:an

Property 5.3. The mean cycle time and departure process for an infinite ca-
pacity single-server worksiation within a factory that has a pure serial system
topology are given by

C'T(i):t( "’( ; f{i))( i )E[T( )| + E[Ti(i)] and

| —u;

(r)~ (l—u,)(% (i—1) 41 ('“()

where i is the sequence number of the workstation and Cs ( ) is the squared
coefficient of variation of the arrival stream 1o the first wor l\smnon (The only
arrivals are to the first workstation.)




» General computation scheme:

-

Property 5.4. The mean evele time and departure process for an infinite ca-
pacity workstation with ¢ servers within a factory that has a pure serial system
topology are given by

NI+ [uy
CT(:}N( 3 ) m E{T(i)| + E|[T:(i)] and

Ca(i) ~ + (1 =) (C3li=1)— 1) + u? (C-(/)__ ), :

\:‘ Cl

where i is the sequence number of the workstation and C ‘(0] is the squared
coefficient of variation of the arrival stream to the first workstation. { The only
arrivals are to the first workstation.)

Once the cycle times for the individual workstations have been obtained,
the overall system performance measures can be determined by merely
summing the individual workstation times. However, it is not a general

computation scheme.

The latter is assumed

2 _ = , that all arrivals to the
WIP, _Zwu - and CT, = E[T,(1)] x WIP; . factory enter through

i=1 =l the first workstation. /




/ Example 5.3. Consider a three-workstation factory with serial flow as depicted in \
Fig. 5.1. Each workstation has a single machine with the service time distribution
parameters as listed in Table 5.1. The inter-arrival time distribution for jobs to the
factory has a mean of 15 minutes or a mean rate of 4 jobs per hour, and a squared
coefficient of variation of 0.75. The system mean work-in-process, cycle time, and

throughput are desired.
Table 5.1 Service time characteristics for Example 5.3

Workstation 7 E[T,(1) C=(i)
1 12 min 2.0
2 9 min 0.7
3 13.2 min 1.0

Since arrivals to the system occur at the first workstation, E[T,(1)] = 15 min
yielding a utilization factor of u, = E[T;(1)|/E|[T,(1)] = 0.8. Using the network
decomposition principle together with Property 5.3 yields the following for the first
workstation:

CT(1) = (C‘;(');C"f“)) (llﬁu|)E[7;(|)]+E[7;(l)]

P

-

0. 2.0\ 0.8 .
= ( (ns )07(l2min)+12min = 78 min — 1.3 hr

Ca(1) = (1 —u}) CL(D) +uiCI(1) = (1 -0.87)0.75 + 0.8°(2.0) = 1.55

| - 1.3 hr _ 59
EIT.(1)] 025hr =~ °°° /

WIP(1) = CT(1) x




ﬁl‘he last equation comes from the application of Little’s Law, and since no jobs are\
lost, the throughput rate is th = 1/E|T,(1)]. Notice that care must always be taken

to make sure that the time units are consistent when applying Little’s Law. Because
this is a pure serial network, the arrival rate and throughput rate will be the same for
each workstation: thus, the utilization factors for the other two workstations are us =
E[T(2)]/E[T,(1)] = 0.6 and u3 = E[Ty(3)|/E[T,(1)] = 0.88. Applying Property 5.3
and Little’s Law to the second and third workstations yield

(0.15 hr) +0.15 hr = 0.403 hr

1.55+0.7\ 0.6
CT(2) = ( = )04

C3(2) = (1-0.6%) 1.55+0.6*(0.7) = 1.244
WIP(2) = CT(2)/E[T,(1)] = 1.613 and

CT(3) = (l.244+ I.O) 0.88

5 0 12(0.22 hr) +0.22 hr = 2.030 hr

7(3) = (1 —0.88%) 1.244 4+ 0.88%(1.0) = 1.055
WIF(3) = CT(3)/E[T,(1)] =8.121.
Finally, the total factory performance characteristics for this serial system are
WIP;, = 5.200+1.613+8.121 = 14.933 jobs

i =3.733 hr.

th /

|
thy = ml—)—] =4/hf C?: —

-




/1 .5.3 Nonserial Network Models A

 Many production systems have more than one inflow point into the

production system, such as the rework of the defective or broken jobs.

* These rework jobs will not necessarily enter the production line at the same
point as a new job.

o |f a defect is found during inspection after partially completing production, it
may be sent to a rework station and then re-enter the production sequence at
the appropriate point.

» To study factory structures that are more realistic than pure serial
systems, two additional structures must be studied:

(1) the merging of streams entering a workstation;

(2) the splitting of output streams that come from a single workstation but are

routed to more than one workstation.

- /




\
/1 .5.3.1 Merging Inflow Streams

e The process of merging inflow streams is technically called a

superposition of the individual inter-arrival processes.

(. G9) Definition 5.1. A renewal process is the process

\ formed by the sum of nonnegative random

(. C2) . -G variables that are independent and identically

distributed. If the random variables forming

/ the sum are exponentially distributed, the
(s, C3) renewal process is called a Poisson process.

Property 5.5. Consider an arrival stream that is formed by merging n in-
dividual arrival processes. The individual streams have mean arrival rates
given by A; = 1 /E|T;] and squared coefficients of variation denoted by C? for
i=1,:--.n. The mean arrival rate, A,, and the squared coefficient of varia-
tion, C2, for a renewal process used to approximate the merged arrival process
are given by

il e ST k N Ao




/Ex

ample 5.4. An automated lubricating facility is located in the center of a mzm-\
ufacturing plant. Arrivals of parts needing lubrication come from three sources:
manufactured parts needing assembly, defective parts that have been disassembled
and will be returned for reassembly, and parts coming from a sister manufactur-
ing facility in another part of the town. The three arrival streams have been ana
lyzed separately. The mean arrival rates for the three streams are given by the vee-
tor (A1, A2,A3) = (13.2/hr,3.6/hr,6.0/hr). The squared coefficients of variation for
the three inflow streams are (C7,C3,C3) = (5.0,3.0,2.2). The total inflow into the
workstation is the sum of the individual inflows so that A, = 22.8 /hr. The relative
weights, 13.2/22.8,3.6/22.8, and 6.0/22.8, are thus used to determine the composite
inflow stream’s squared coefficient of variation as

13.2 3.6 6.0
2 12.4 2.0 0.4
C, = 22850 2283O+22822 3.947 .
To compute the mean and standard deviation of the inter-arrival times, remember

that mean rates and mean times are reciprocals; therefore,

1
E[T,] = mhr 2.63 min, and

V[T, = 3.947(2.63%) = 27.30 min®.




/1 .5.3.2 Random Splitting of the Departure Stream A

e Jobs that exit from a workstation can be transferred to different
workstations based on several possibilities.

e Multiple products can be made by specializing a partially processed product.

e Quality control testing with good items continue on their normal route
and bad ones being reworked or corrected at a different workstation
before continuing normal processing.

* Assume pis the probability that output from one workstation is directed as
an arrival process to a second workstation, and N is the number of
departures from the first workstation between arrivals to the second
workstation. Thus, the probability mass function of Nis given by

Pr{N=n}=f(n)=p(1—-p)" T (N

where p is the probability that a given job is routed to the second workstation, inde-
pendent of previous or future routings. The characteristics for this geometric random
variable N are therefore given by

| -
E[N] = — VIN] = —= .

K P L




/ To compute the time between visits to the second workstation for jobs departing\
from the first workstation, we define the random variable 7" as the random sum of N

of the independent and identically distributed inter-departure times, 7;; namely,

N
T=Ti++Tv=DT.

i=1
E(N] ypy  VIT], (1= p)EIT

P P P’ |

Noting that C*[t] = V[T]/(E[T])?, it is not too hard to derive the following property
for split streams.

ET| =

Property 5.6. Consider a departure stream from a specified workstation with
a mean inter-departure time and coefficient of variation given by E[T;] and
C‘z,, respectively. When a job departs from the specified workstation. there is a
probability, p, that the job will be routed to a target workstation. If there are no
other arriving streams to the target workstation, then the mean inter-arrival
time and squared coefficient of variation for arrivals to target workstation are
given by

E[T,]
P
(= pCitl—p.

E[T,]

If Aq is the mean departure rate of jobs from the specified workstation, the
mean arrival rate to the target workstation is A, = p Ag.



) Example 5.5. The fifth workstation within a manufacturing facility performs a qual-\
ity control check on partially manufactured items. Parts receive an unqualified pass
from the inspector with probability 0.8 and they are then sent to Workstation 6 (0
continue the manufacturing process. Approximately 18% of the time, a part has
a partial pass of the quality check and is sent to Workstation 10 for rework. And
approximately 2% of the time, a part completely fails the test and is sent to the
hazardous waste station for disposal which is designated as Workstation 99. The
throughput rate for Workstation 5 is 7 jobs per hour and the coefficient of variation
for the inter-departure times is 3. As a notational convention, we let A,(i, j) de-
note the mean arrival rate of jobs coming from Workstation i/ going to Workstation
j. Likewise, Cf,(i, j) denotes the squared coefficient of variation for the stream of
jobs from Workstation i feeding into Workstation j. Thus, Property 5.6 yields the
following:

Aa(5,6) = 0.8 X 7=5.6/hr Aa(5,10) = 0.18 x 7= 1.26/hr

C%(5,6) = 0.8 x3+0.2=2.6 C2(5,10) = 0.18 x 3+0.82 = 1.36

As(5,99) = 0.02 x 7=0.14/hr
C2(5,99) — 0.02x340.98=1.04.

Notice that as a check, the arrival rates can be summed and they must equal
the departure rate from the original stream before it was split. Such a property
Kdoes not hold for the squared coefficients of variations.




\
/1 .5.4 The General Network Approximation Model

» External flows into any one of the workstations, rework branches, splitting

of the output from a workstation to different next workstations, etc.

1.5.4.1 Computing Workstation Mean Arrival Rates

» Consider a simple two workstation example.

| Arrivals from an external source
E_E.‘ ’ l :**1"‘ 5 T‘___E_l:iz—[i} enter the first workstation with a
| B mean rate of y.
- Feedback from workstation 2
Fig. 5.3 Example of a non-serial factory model with probability g.

M =Y+Bh, ’1‘_&2:%»( : ):( T >—l(y)

Ar = A1+ Ay M+ (1—a)i; =0. Ar | -1 1-a 0 ‘
» Therefore, a system of linear equations established and solved can obtain

the mean inflow rates for each workstation. To formalize for a general

\__network application, the switching rule needs to be defined. %




» Definition 5.2. Consider a network consisting of workstations numbered

-

from 1 to n. The switching rule for the network is defined by an n7xn matrix
P=(p;), where p, ;is the probability that an arbitrary job leaving workstation
/ will be routed directly to workstation /. The matrix Pis called the routing

matrix for the network.

» Row /of the P consists of the probabilities relating to the splitting of the outflow

from workstation /into the various resultant successor workstation /.

» Column Jrepresents the probabilities that jobs leaving the various workstations

go to workstation /.

» Define ), as the external inflow rate and A; as the total inflow rate into

workstation /. Therefore, the total rate into workstation | must satisfy the

n
A=Y+ Zpk,itk, fori=1,---.n, ),:[”'),4-)/
k=1
where A and ¥ are n-dimensional column vectors of the A; and ¥ terms and PT
denotes the transpose of P. /




4 Property 5.7. Consider a general network of n workstations with switching
rile defined by the routing matrix P and assume that the sum of at least one
row of P is strictly less than one (i.e., jobs exit the network from at least
one workstation). Let ¥ = (Y1, ,Ya) denote a vector consisting of the mean
arrival rate of jobs from an external source to the workstations. Both P and
Y are known. Let A = (A1.--+,A,) be the (unknown) vector denoting mean
arrival rates of all jobs to the workstations. The vector A is given by

A=(1-P) 'y,

where 1 is an n X n identity matrix.

Example 5.6. Consider the factory network '
| B \ 1/10
of workstations with the noted branching A o
— : 34
probabilities and an external flow rate into v \94’1{}
the first workstation of 5 jobs per hour. 5 4, 1
! ; —
4 1 T - 19/2
) 3

1720
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I'he system of equations defining the workstation total arrival rates are A

AL = 5+0.1042+0.0543

110

Ay = 04+0.75A44
Ay = 04+0.254; +0.904, .
This system rearranged 1s
IA; —0.104; —0.0543 = 5
—0.75A1+ 14 +043 =0
—0.2541 —0.90A, + 143 = 0,

which has the unique solution

18/20
>

1/20

A1 =5.690, A; =4.267, A3 =5.263.

Thus, the first workstation receives 5.690 jobs per hour; 5 of these from the exter-
nal source and the remaining 0.690 jobs from Workstations 2 and 3. The second
workstation receives 4.267 jobs per hour, all of these from Workstation 1. The third

workstation receives a total of 5.263 jobs per unit time as the combined inflow from
Workstations | and 2.

- /
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1.5.4.2 Computing Squared Coefficients of Variation for Arrivals

Property 5.8. Consider a general network of n workstations with switching
rule defined by the routing matrix P and assume that the sum of at least
one row of P is strictly less than one. The characteristics of the flow of ex-
ternal jobs to Workstation j are given by y; and C2(0. j). The total mean
rate of jobs coming into Workstation j is given by A; (from Property 5.7)
and the workstation consists of c; servers processing one job at-a-time. Each
server within Workstation j has a mean service time of E[T;| and squared co-
efficient of variation for service of C 2(7) with 1vorAstatzor: utilization factor
uj = E[Tj|Aj/c; < 1. The values of C2(j) for j = 1,---,n that satisfy

C2()) = /}{JCZ(O )+2 ‘f“[pk,(l—w)c‘zu
k=1 J

Cz (k) + o |
*1’”“&( ()\/L\_?I

are the squared coefficients of variation for the inter-arrival times of jobs
entering the various workstations. )

)+1_Pk,jJ forj=1,+,n




Property 5.9. Consider the workstation network described in Property 5.8.
Let ¢ denote the vector of squared coefficients of variation for the arrival
streams; that is, ¢ = (C2(1),--+,C*(n)) and

ik /s
cGx~(I-0') b,
where I is an n X n identity matrix, the elements of Q are given by

Rkpz‘,,-(l i “1%)

i :
qdk,j i

and the elements of the b are given by

Yj N AP CHE) + fop =1
bj=71i03(0,1)+"21 ).,-J (m—,_,-ui ! \/Z_f_ +1-pr;}) -




e The following is a summary of the solution procedure used to fully\
develop a general factory model, obtain the values of the unknown
parameter sets, and derive the relevant performance measures.

I. Workstation mean flow rates of jobs (and thus also their reciprocals, the mean
flow times) are obtained through the system of equations given in Property 5.7.

. Workstation offered workloads and utilization factors are calculated next, where
the offered workload is the mean flow rate multiplied by the mean processing
time and the utilization factor is the offered workload divided by the number of
available servers in the workstation. (Utilization factors must be strictly less than
one for steady-state conditions to hold.)

3. Workstation squared coelhicients of variation ol the inter-arrival times are ob-

[

tained either through successive substitution using the system of equations in
Property 5.8 or the matrix solution of Property 5.9,

4, The decomposition principle is used to obtain the mean time spent in the queue
at each workstation using either Property 3.3 or 3.6. The mean service time is
added to the time in queue to obtain the mean workstation cycle time and then
Little’s Law (Property 2.1) is used to obtain workstation WIP.

5. Factory WIP is obtained by summing the individual workstation W/1Ps, then the
total mean cycle time for a job within the factory is derived from the application
of Little’s Law again. Factory throughput is merely the sum of the external in-
flows into the system, under the assumption of the existence of steady-state and

\ no turning away of jobs. /




Stepl: A = (1-—-1’7')”l |

Step2: u=E[T]/(cE[T.]).

Step3: C2(j) = %Cﬁ((),j)'*‘
j

Ci(k) + /cx — 1

Y

APk, j
Aj

n
2
k=1

[pk, 1=

+Pk,ju£ ( \/a )+1_Pk,j] for j=1,:+/n
OR -0t
Step4: 2 2
" enrem s (9FS) (75, ) EmEm. OR
C24-C? 2+l
CT(G/G/e) (———-2—-—) iy | BB CT(GIGI0)=CT(G/G/c)+ E[T,]
Step5:

WIP=A xCT




/Exam.ple 5.7. Consider a factory that consists entirely of single-server workstations\
with service time data for each workstation given by Table 5.3. Arrivals from an

Table 5.3 Workstation characteristics for Example 5.7 [ — —
Workstation i E[Ti(1)] C=(i) s o , l'“xh i
1 7.80 min 1.0355 —fa e
2 7.80 min 1.7751 —~ o
3 9.60 min 0.3906 — 3| w10l | 110
4 3.84 min 2.4414

external source enter into the factory at the first workstation, and the arrivals are ex-
ponentially distributed with a mean rate of 5 jobs per hour. After initial processing,
2/3 of the jobs are sent to Workstation 2 and 1/3 are sent to Workstation 3. After the
second step of processing, jobs are tested at Workstation 4, and only 40% of the jobs
are found to be acceptable. Ten percent of the completed jobs fail the testing com-
pletely and are scrapped, at which time a new job is started to replace the scrapped
jobs. Fifty percent of the jobs partially fail the testing and can be reworked. Sixty
percent of the partial failures are sent to Workstation 3 and the others are sent to
Workstation 2. After reworking, the jobs are sent again for testing at Workstation
4 with the same percentage of passing. partially failing, and completely failing the
testing. (Figure 5.5 illustrates these job flows and switching probabilities.)
Management is interested in the mean cycle time for jobs, factory inventory lev-
KCIS- and workloads at each workstation. /




Step1: Workstation Arrival Rates

1 I_ IS
Ay = 5+ m;td . __,a-:' - "‘*m_ o110
’]!__ - ﬂ + Eﬂ_ + 2 ‘14 _E_+ 1 __a-"’f-f “'““ﬂ-'m.__q_‘ yy
SR M) —rJH //,,, =N
1 3 13
Rt 2
Az =0+ gM Tt l'EIH“L [ 43 ~3M0 | | 1Mo
A =0+Ar+43.

The solution to this system of equations is
{:ﬂhlg,l},ﬂu} = (6.25,6.667,5.833, 12.5).

Thus, even though there are only 5 jobs per hour that enter into the factory, the jol

arrival rate into Workstation 4 is 12.5 per hour. The reason for this increase 1s due

to the high proportion of feedback of jobs that exit Workstation 4.

6 &L " 6 %° |
F o - JE— LI :5 —; _5-
5(l+m+(10) +(m) v ) (l—ﬁ.ﬁ) 12

-




/StepZ: Workstation Utilizations A

Step 2: Workstation Utilizations. The offered workload to each workstation is the
mean job arrival rate multiplied by the mean processing time per job which then
equals the utilization factor since each workstation has only one processor. This
analysis is displayed in Table 5.4 including two factors (squared utilization terms)
that will be needed.

Table 5.4 Workstation data: arrival rates, mean service times (in hours), and utilization terms

Workstation i Ai E|T(i)] i“; u 1 —uf
| 6.250/hr 0.130 hr 0.8125 0.6602 ().3398
2 6.667/hr 0.130 hr 0.8667 0.7512 0.2488
3 5.833/hr 0.160 hr 0.9333 0.8710 0.1290
4 12.50/hr 0.064 hr 0.8000 0.6400 0.3600

The resulting utilization factors are all in the 80% to 90% range. If the offered
workload were greater than one, the number of machines would need to be increased
to insure that the utilization factor is less than one. Otherwise, the system cannol
handle the necessary workload and in the long run the queues for these workstation
will grow indefinitely. This violates the steady-state assumption underlying all our
models and further analysis could not be performed.

- /




/Step3: Squared Coefficients of Variation
First observe that 2 = 3 = ¥4 = 0_ ¥1 = 5/hr and C2(0,1) = 1.

5 12.5(0.1) 9
2
G =t [ (0.36C2(4) +0.64 x 2.4414) + - 0] 0.0072C3(4) +1.0112

6.25(0.6667) 1
2(2 2
alB) = —— [ (0.3398C2(1) +0.6602 x 1.0355) + 3]
12.5(0.2) 5 8
T 6.6667 [ (0.36C;(4) +0.64 x 2.4414) + 10] 0.1416C2(1) +0.0270C2(4) +0.9104

|

6.25(0.3333 2 |
(3) ( ) [ (0.3398C;(1) +0.6602 x 1.0355) + %]

E;
5.8333

(Sl )

12.5(0.3) 2 7
58333 |10 (0 36C;(4) +0.64 x 2.4414) + To | = 0.0405C3(1) +0.0694C 2(4) 4 1.0708

6.6667(1
CZ(4) = 12—5() [1(0.2488C2(2) +0.7512 x 1.7751) + 0]

5.8333(1
e 5( ) [1(0.1290C2(3) + 0.8710 x 0.3906) + 0] = 0.1327 C2(2) + 0.0602C;(3) +0.8699 .

firstset  ¢€2_,,,; = (C2(1),C2(2),C2(3),C2(4) )siepr = (1,1,1,1).
After one step of the algorithm, we have c;’-‘ srepl = (1.0184,1.0790,1.1807,1.0628)

The next step gives c; step3 = — (1.0189,1.0833,1.1858,1.0628) .

By the fifth iteration, the values for the squared coefficients of variation converge to
\_ 2 = (1.0190,1.0840,1.1874,1.0852)

a—stepS




/Step4: Decomposition

CT(1) = (1'019”"0355)( gl )(0.130)+0.130:0.709 hr

2 1 —0.8125
WIP,(1) = 0.709 x 6.25 = 4.429

Ao 1.0840 4+ 1.7751 0.8667
CT(2) = 2 1 —0.8667

WIP,(2) = 1.338 X 6.6667 = 8.920

-(0.3¢ 9333 |
CT(3) = ("'8744 0'3)”6) (I 2 )(().mo)+o.m(): 1.927 hr

) (0.130) +0.130 = 1.338 hr

) 0.9333
WIP,(3) = 1.927 58333=11.243
1.0852 +2.4414 0.8
CT(4) = ( . ) (1 08) (0.064) +0.064 = 0.515 hr

WIP,(4) = 0.5154 x 12.5=6.443 .

Step 5: Factory Performance Measures. The factory throughput rate must equal to
the inflow rate; therefore, thy, = 5/hr. The work-in-process for the whole factory is
the sum of the individual workstation work-in-process numbers; therefore, WIP, =
31.03, and Little’s Law yields the mean cycle time: namely, CT, = 31.03/5 = 6.206
hr. Notice that CTj is greater than the sum of the individual workstation cycle times
Kbccause most jobs visit some of the workstations more than once.




/) Example 5.8. Reconsider the factory of the previous example as represented in
Fig. 5.5 except that Workstation 3 has been changed. Workstation 3 now has two
machines, each with a mean service time of 16.8 minutes with a squared coefficient
of variation of 0.7653. Although the machines are slightly slower, the processing
rate of the workstation is faster since there are two machines but the variability of
the individual machines is increased. These data are shown in Table 5.5.

Table 5.5 Workstation characteristics for Example 5.8

Workstation i E[T(i)] C=(i) Ci
1 0.130 hr 1.0355 1
2 (0.130 hr 1.7751 1
3 0.280 hr (.7653 2
4 0.064 hr 2.4414 |

The external arrival rate and the switching probabilities have not changed: there-
fore, the workstation mean arrival rates remain as

(A1, A2, As, As) = (6.25,6.6667,5.8333,12.5).

- /




4 Since the mean arrival rates are the same in the previous example, the three un-
changed workstations having the same utilization factors. Workstation 3, however,
now has two servers, c3 = 2, with a different mean service times so the utilization
factor is recalculated as

= 0.8167.

5.8333(0.28)

us = ME|[T:(3)] /3 = >

Since the service mechanism is changed for Workstation 3, its departure process
will be changed which directly effects the arrival process for Workstation 4; there-
fore, the defining equation for C2(4) will be changed. The departure stream from
Workstation 3 does not directly flow into any other workstation so all other defin-
ing equations for the squared coefficients of variation remain the same. This new
equation for C>(4) is

) 6.6667(1
ald) == 12.5(‘
5.8333(1)

12.5

) [1(0.2488C3(2) +0.7512 x 1.7751)]

0.7653 +v2 — | )}

[ | 0.3330C3(3) +0.6670
[ ( 2(3) 7

which reduces to 24y _ . 1327¢%(2) +0.1554C2(3) +0.9708..

i

k ¢2 = (1.0206,1.0901,1.2025,1.3023) . y




s

Note that the cycle time estimate for the third workstation is now based on N

the multiple-server approximation from Property 3.6.

1.0206 + 1.0355 0.8125
Ry = ( 2 ) (1—0.8125
WIP,(1) = 0.709 x 6.25 = 4.432

1.0900+ 1.7751 0.8667
S~ ( 2 ) (1 —0.8667
WIP,(2) = 1.341 x 6.6667 = 8.937

) (0.130) +0.130 = 0.709 hr

) (0.130) +0.130 = 1.341 hr

CT(3) = (1.2025 +0.7653) ( 0.8167V6
2 2(1 —0.8167)
WIP.(3) = 0.840 x 5.8333 = 4.901
o 1.3023 + 2.4414 0.8
67(4):( 2 )(1—0.8
WIP,(4) = 0.543 x 12.5=6.790 .
The factory level measures become 1hy = 5/hr, WIP, = 25.06, CT; = 5.012 hr.

- Y,

) (0.280) +0.280 = 0.840 hr

) (0.064) +0.064 = 0.543 hr




s

n
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1.6 Multi Product Factory Models

» There are two basic principles to model multiple product facilities.

(1) The workload on a workstation is the sum of all the visits multiplied by
the processing time per visit.

e Definition 6.1. The offered workload (or simply the workload) of a workstation is
the total amount of work that is required of a workstation per unit of time. The
workload is determined by the sum of the total arrival rate (per hour) for each
product type multiplied by its associated mean processing time (in hours). For
purposes of determining workload, when a specific product type revisits a
workstation, it is considered as a separate product type.

(2) The job flow needs to be maintained by product type. That is, the
number of visits to each workstation by product class is needed. Different

products can have different probabilistic flows through the production facility

as well as different processing time characteristics.
NS /




/1.6.1 Product Flow Rates

Property 6.1. Consider a factory of n workstations where Product Type i fol-
lows the switching rule defined by the routing matrix P' and assume that the
sum of at least one row of P' is strictly less than one (i.e., jobs exit the net-
work from at least one workstation). Let ¥' = (Y;1,-+,Yin) denote a vector
consisting of the mean arrival rate of Type i jobs from an external source to
the workstations. Both P' and ¥' are known. Let A" = (Aits: - Ain) be the
(unknown) vector denoting mean arrival rate of all Type i jobs to the worksta-
tions. The vector A' is given by

A= (1-(Py) o
where I is an n x n identity matrix and (P')" is the transpose of P'.

Once the arrival rates for the various product types have been determined, the total
arrival rate of jobs to Workstation k& is given by the sum of the different product
types: that is

m
lk — z ;ti.k s
i~

where m is the total number of product types within the factory.

Property 6.2. Consider a factory of n workstations with m different job types,

and let the arrival rate of Job Type i from an external source be given by

i1 Yig Then the expected number of visits to Workstation k by Job Type iis
K Aigf X1 Yi.p where Ai i is the arrival rate as determined by Property 6.1.




o Example 6.7 Consider a four workstation facility that processes two
products with each product arriving to the first workstation according to
individual Poisson arrival streams, each at a rate of 5 per hour.

| - At = 5+0.104; +0.0543
W ERN Ao = 040.75 D A'=(5690,4.267,5.263,0).
s [ 1 ‘ N Ay = 00254, +0.904; .
e N ey
Y3

1420

Product 1 routing structure

2=5+—4
L=y
2~ 210 2 2
23— As =0+ A1+ —A e
=l ey W 3T 0™ W A?=(6.25,6.667,5.833,12.5).

| 3
. ol O |
.ﬂ._‘{ 0+ 3.-'1.[—|- 0 g

M0 A =04Aa+A3.

g

Product 2 routing structure A =(11.940,10.934,11.096,12.5) .
* The average number of visits of Job Type 1 to Workstation 1 is 1.138, but that to

the Workstation 2 is 0.8534. The most visited workstation by a single product type
is the fourth workstation that has each job type 2 visiting it an average of 2.5

\_ times. /

M0 |




/1 .6.2 Workstation Workloads A

» By Definition 6.1, the workload at Workstation k<, WL,, is computed as the
sum of the product visits multiplied by their respectively mean processing

times; that is,

n

WL = ZJL;LE (i, k)]

where mis the total number of product types within the factory.

» The utilization factor, u,, for Workstation kis then the workload divided by

the available capacity; thus,

- Hr‘rf_.;; ] ].::1. Lﬁ[T {! ]
H-ﬁf T ) = 1
Cr Cr

where ¢, is the number of identical processors available at Workstation &

to handle the workload.

- /
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Example 6.2. We return to Example 6.1 and assume that there is one machine at each
workstation and that the processing time data for the two products are as given in
Table 6.1. Since there is one machine per workstation, the workload and utilization

Al =(5.690,4.267,5.263,0). Al =(6.25,6.667,5.833,12.5).
Table 6.1 Processing time characteristics for Example 6.2
Workstation k E[T.(1,k)] C:(1,k) E[Ty(2,k)] CZ(2,k)
I 1/14 hr 0.8 1/15 hr 1.33
2 1/10 hr 1.2 1/18 hr 2.00
3 1715 hr 1.5 1/12 hr 1.50
4 — - 0.06 hr 0.75

factors are the same at each workstation so that
u= (0.8231,0.7971,0.8369,0.75) :

With utilization factors all less than 1.0, the factory can achieve steady-state and
further analysis is possible. O

- /




/1 .6.3 Service Time Characteristics A

o For Workstation 4, the service time will be the random variable 7/ A)
whenever Product /is being processed. The service time for an arbitrary
job, independent of the job type, is the random variable denoted by 7(A).
In the long-run, the probability that a given machine at Workstation & will
be processing a Type / job is A,/A,; thus, 7(k) is a mixture of random
variables sinc , , o

T,(1,k) with probability .ll_;

| Ti(m, k) with probability %*

where mis the total number of product types within the factory.

n r W'f.-j; V[T]:E[TZ]'E[T]2
EIT,(K)] =Y SRE[T (i, k)] = - C[TI=V[TVE[T]?
=1 M k E[T2]=(1+C?[T]) E[T]?

C?[T]=E[T?)/E[T]?*-1
o (30 (Aix/Ak) E[T5(i,K)))

\

|

2




/E,\'(unple 6.3. We are now ready to derive the mean and squared coefficients of varia- N
tion for the four workstation service times using the arrival rate data of Example 6.1
and the service time data of Example 6.2,

The total arrival rate for the first workstation is 11.94/hr and thus,

5600\ 1 [6.250\ I
BT = (11.94) 14+(11.94) Tl

The computations for the squared coefficient of variation are

2GS (L) (1+08)+ (839 (L) +133)
Ci(1) =121 (0'0689‘;2"4 2 ~1=1.0616.

Note that some of the numbers used in the above equation were taken from Table 6.1.
The final results for the service time characteristics for the four workstations are

contained in Table 6.2. A! = (5.690,4.267,5.263.0). 1% =(6.25,6.667,5.833,12.5).
Table 6.2 Service time characteristics for Example 6.3 A =(11.940,10.934,11.096,12.5) .

Workstation k E[Ti(k)] C:(k) Worksttionk — EL(LA) Ci(Lk E[LQK] )
| 0.069 1.062 l 1114 hr 08 /15 hr 133
2 0.073 1.678 2 1110 e 12 I/18 hr 200
3 0.075 1.530 3 15 br 15 1/12hr 1.50
4 0.060 0.750 : - - 006 075




/1 .6.4 Workstation Performance Measures A

Property 6.3. Consider a factory of n workstations with m different job types.
Assume that the total arrival rate of Job Type i to Workstation k is given by A; 1,
and the probability that a job of Type i leaving Workstation j will be routed to
Workstation k is given by p‘j i The composite routing matrix, P = (p ) gives
the switching probabilities of an arbitrary job and is determined by

m 9 1
2Py
ks o forjk=1,:--,n.
J

As long as there is no priority being given to specific job types, all jobs
experience the same queue; therefore, the mean cycle time within
Workstation A by Job Type /is given as

CT, (i, k) = CTy (k) +E[T:(i,k))




Property 6.4. Consider a factory of n workstations with m different job types.
Assume that the external arrival rate of jobs of Type i to Workstation k is
given by Y 1, and the total arrival rate of Job Type i to Workstation kis given
by Ai . Furthermore assume that the mean time spent waiting for processing
in Workstation k by an arbitrary job (namely, CT,(k)) has been determined.
Then the mean time spent within the factory by a Type i job is given by

z=] A'ik(CTq (k) + E[Ts (i.s k)])

T - L
j=1Yij
fori=1,--+.m L , w AR |
- g e L\ o i Ee—
Tl T T
A) = (5.690,4.267,5.263,0). A2 = (6.25,6.667,5.833,12.5). — 1 ST ] e

Example 6.4. We now complete the analysis of the factory contained in Exam-
ples 6.1-6.3. The matrix of probabilities are obtained from Property 6.3. For ex-
ample, the probability of going from Workstation 2 to Workstation 1 is determined

as
 Aipph +Anpl  4.267(0.1) +6.667(0)

Fa A = 10.934

o

- /

= 0.039.




/Continuing with the other workstations should yield

0 07060294 0
0.039 0 0.3510.610
0.024 0 0  0.526
| 0.100 0.200 0.300 0

The analysis required to obtain the mean waiting times in the workstations is the
same procedure as for individual product systems once the composite product data
and transition probability matrix P have been developed. The squared coefhicient of
vmia(ion for the arrival streams into cach workstation is again obtained by solving

the C2 system of equations (Property 5.8).

C2(1) = 0.00051 C2(2) +0.00016 C2(3) +0.00458 C>(4) +0.9943
C2(2) = 0.17554C*(1) +0.02001 C2(4) 4+ 0.8205

C2(3) = 0.03C%(1) +0.04427C%(2) +0.04436 C3(4) + 0.9235
C2(4) = 0.11868C2(2) +0.07358C2(3) +1.0396 .

C3(j) = “cz(o n+2 "”“[ Pr (1 = u)C2K) + py 1t (C () +‘/7"’)+l—m,,]

Aj

e
-

/




/o

I'he solution to this system 1s

¢ = (1.0007, 1.0209,1.0537,1.2383) .

P BN

The cycle time by workstation i1s given as the composite time for all products
visiting that workstation. The computations for this example are displayed in the

following table. 2 1 2
e L
_ 2 1 —u
Table 6.3 Cycle times and W/P for each workstation of Example 6.4
Workstation k CT,(k) CT(k) WIP(k)
| 0.331 hr 0.400 hr 4.772
2 0.387 hr 0.460 hr 5.029
3 0.502 hr 0.577 hr 6.402
4 0.183 hr 0.243 hr 3.036

The total facility performance measures are for the total work in the facility and
are not distinguishable by product type. The total system work-in-process is the sum
of the workstation WIP’s and equals 19.238. The total inflow and, hence, throughput

for the system is 10/hr. Thus, the average cycle time in the system for all items by
Little’s Law is 19.238/10 = 1.9238 hours.

o /
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n , . I — (5. 4.267.5.263.0) .
ot B MCTW+ELGRD A -coe r+
N e n X
j=1Yij Al =(6.25,6.667,5.833,12.5).
] s Table6.3 Cycle times and WIP for each workstation of Example 6.4
; i 1" i /13 hr .33 I 0331 hr 0,400 hr %I
3 e l:’ : '“5"’ 200 2 0387 hr 0.460 hr 5.029
i [ L3 112 hr 1.50 3 0,502 hr 0.577 hr 6,402
= = 0.06 hr 0.75 4 0,183 hr 0.243 hr 3,036

Property 6.4 is combined with the data of Tables 6.1 and 6.3 to produce the
system mean cycle times by individual product type. For this example these compu-
tations are:

CT' = [5.690(0.3307 +0.0714) +4.2674(0.3870 +0.1)
+5.2632(0.5015+0.0667)| /5= 1.4714 hr

CT? = [6.25(0.3307 + 0.0667) + 6.6667(0.3870 + 0.0556)
+5.8333(0.5015 +0.0833) + 12.5(0.1828 +0.06)] /5 =12.3763 hr .

These two products are produced 1n equal quantities, so the average cycle time for
the factory 1s the average of these two individual product cycle times or 1.9238

Khours. /
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1.6.5 Processing Step Modeling Paradigm

|t is necessary to keep track of not only the job location but also the visit

number to the location

e The mean and standard deviation of processing time may not be the same

even if the same type of job visited the same workstation.

e The switching probabilities may depend on both the job type and the visiting
times to a workstation of the job.
» To accomplish the job location control, a data description method is used
that is based on the process step that the job is undergoing.
e List the processing steps that a job must go through during the production
process.

» The information associated with each processing step includes the workstation

being visited and the processing time characteristics.

- /




Definition 6.2. Consider a factory with » workstations and a job of Type i that has
V; processing steps in its production plan. The workstation mapping function, de-
noted by w'(¢) for £ =1,---,v;, gives the workstation assigned to the /' h step of the
production plan; thus w'(-) is an integer-valued function with range 1, - -, n.

 Consider an example shown in Table 6.5. The product flow is

Table 6.5 Processing data in hours in processing step form for two different products

Product 1 Step # I 2 3 4
Workstation # I 2 3 1

E|T| 3.0 7.2 1.62 2.

C?[Ty] 1.5 2.0 0.75 5
Product 2 Step # | 2 3 -
Workstation # I 3 2 3

E|T] 3.2 1.45 7.0 1.0

ool ll 1.0 1.75 1.7 0.45

whereas the sequence of workstation in which jobs of Type 2 are processed is 1, 3,
2. 3. As an example of the workstation mapping function, notice that w'(2) = 2 and
~9

we(2)=3.

- /




) Definition 6.3. Consider a factory with m job types, where Job Type i has a pro-
duction plan consisting of v; steps. The step-wise routing matrix, denoted by P', for
Job Type.i is a square matrix of size v; x v; v.vhere 13;, ; gives the probability that Job
Type i will be routed to Step j after completing Step (.

L—Tﬂ [ol—s 4 5] |—|”'”.f..h

W5 1 W53 W52 o1 WS 3 o

Example 6.5. Consider the production plan given in Table 6.6 involving a factory
with three workstations. Assume that Workstations 1 and 2 are reliable but that

Table 6.6 Processing step paradigm for multiple visits to workstations with th2 data in hours

Step # 1 2 3 - 5
Workstation # l 3 2 I 3

E[T|] 3.0 2.5 3.7 4.0 3.6

C*[T;) 1.0 0.75 1.25 1.75 1.32

Workstation 3 is not. There is 10% chance that jobs being processed through the
third workstation for the first time (i.e., Step 2) must be returned to Workstation |
(Step 1), and a 5% chance that jobs being processed through the third workstation
for the second (i.e., Step 5) time must be returned to Workstation 2 (Step 3).

- /
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WS 1 WS 3 WS 2 WS 1 WS 3 e

Table 6.6 Processing step paradigm for multiple visits to workstations with the data in hours

Step # 1 2 3 4 5
Workstation # 1 3 2 I 3

E[T] 3.0 2.5 3.7 4.0 3.6

C*(T,] 1.0 0.75 1.25 1.75 1.32

In this case, the workstation mapping function is
) =1, 2)=3,w'3)=2,w@)=1,w(5=3,

and the step-wise routing matrix is given by

O 1 0 0 0
R 0.1 0 09 0 0
PP=| 0 0 0 1 0

0O 0 0 0 1
0O 0 005 0 0O

- - - /




/1 .6.5.1 Service Time Characteristics

Definition 6.4. An indicator function for integers, denoted by I(i, j) for i and j

integers, is defined by
con J1ifi=j
10, j)= {() ifisj.

Notice that an identity matrix is an indicator function where the domain for 7 and j
are the same.

Property 6.5. Considera faciory of n workstations with m different job types.
Job Type i has a productzon plan described by the workstation mapping func-
tion w'(£) for L=1,-v+ . vi The mean number of Type i jobs passmg through.

yeach s'tep is given by the vector)l. where

-i.«' l .I' . - i
Ay

wkere 7} is the mean arrival rate from an external source of Type i ]obs to
Step L. Then the total mean arrival rate of all jObS to Workstationk is

m

z'i,gl“'*e)k) o;e W=y, F M
= ,

| i i=1ge{w (£)=k}
where /1 AN rhe mean arrzval rate of T)pe i jobs to Step f. Note that the

\_ components of the vector A are the values of A,,"pf()l i R, ¥




We let the random variable T;(i, /) denote the processing time for Job Type i during
the /" step of its production plan. The mean service time for Job Type i during
Step ¢ is denoted by E [T (,€)] and this occurs at the workstation designated by
W (P) Likewise, the squared coefficient of variation of the service time is given

by CZ(i, ). With these definitions, the workload and utilization for Workstation

==t = (ﬁzldf[m 17 ,k))/q..

i=17¢
where ¢; is the number of identical processors available at Workstation & to handle
the workload, m is the number of job types, and v; is the number of production steps
for Job Type i.
The service time characteristics for Workstation k are also given similarly

EIT;(k 1—22 P (T, 0)] I (), ) = T
i=1¢=1 7% k
m Sy (Aae/ ) BT (i, £))2(1 + CX(i, £)) I(W(£), k)

E[T,(k))? -

C: (k) =




/Emmple 6.6. Consider a factory with three workstations that 1s open 24/7 and mzm—\
ufactures one job type. Order for jobs are released randomly throughout the 24-hour
period and it has been determined that the number of jobs ordered each day is Pois-
son with a mean of 4.8 jobs. All jobs begin processing at Workstation 1 and then
follow the route with processing characteristics specified by Table 6.6 with branch-
ing probabilities given in Example 6.5 and defined by the step-wise routing matrix
of Eq. (6.6). Since the number of arrivals per unit time is Poisson, the inter-arrival
times must be exponential; therefore, the arrival stream has a squared coefhcient of
variation of 1.0. The 4.8 per day rate of arrival of jobs is equivalent to 0.2 arrivals
per hour; thus y; = y; = 0.2/hr. (Notice that we are dropping the subscript indicating
the job type since there is only one type.) The application of Property 6.5 yields the
following step-wise arrival rates

Table 6.6 Processing step paradigm for multiple visits to workstations with the data in hours

Step # 1 ) 3 ] 5 '001 (1) 009 g 8
Workstation # l 3 2 l ] g 1o 6 0 10
E[T‘] 3.0 2 ;1) 4) 3.6 0 0 0 0 1
(1] 10 0.75 125 175 1.3 0 0 00500

A = 0.2222/hr, A; = 0.2222/hr, A3 = 0.2105/hr, A4 = 0.2105/hr, As = 0.2105/hr.

K A1 =0.4327/hr, A; = 0.2105/hr, A3 = 0.4327/hr. /




The workload calculations for the three workstations are
WL; =0.2222 x 3.0+ 0.2105 x 4.0=1.5086

WL; = 0.2105 x 3.7=0.7789

WLy = 0.2222 x 2.5 +0.2105 x 3.6 = 1.3140.

For a steady-state to exist, the number of machines at each workstation must be
strictly greater than the workload: therefore, there must be at least two machines for
Workstations 1 and 3 and one machine at Workstation 2. Assuming the minimum
requirements, the workstation utilization vector is (75.4%, 78.0%, 65.7%).

The service time characteristics for Workstation 1 are calculated as

1.5086
v —_— —— 3 H
E[T:(1)] 0430 486 and
0.2222/0.4327)(3%)(1 +1) +(0.2105/0.4327) (4%){1 + 1.7
Cz[Tg(l)] - ( / )( )( + )+( /0 7)( )'\ £ 5) -1 =1522.
3.486°
Table 6.7 The composite processing data for Example 6.6

Workstation & Ck Uj E[Ti(k)] C (k)
1 2 0.754 3.486 hr 1.522
2 1 0.780 3.700 hr 1.252
3 2 0.657 3.037 hr 1.195




/1 .6.5.2 Performance Measures N

e Complete the factory analysis
e Mean and squared coefficients of variation for the processing times of a
workstation
* Mean and squared coefficients of variation for the arrival streams to each work
station
 To obtain the system of equations that define these terms, the factory
with multiple routing schemes will be converted to a similar factory with
probabilistic routing by the following route matrix.
Property 6.6. Consider a factory of n workstations with m differeni job types.
Job Type i has a production plan described by the workstation mapping func-
tion w'({) for £ = 1,-- -, vi. The workstation routing matrix, P is defined, for
K=l aein by

(ZZZANPM (W' (£),k) I(W' (1), )) i

f=1 ]y

N where the terms A; ¢ and Ay are determined by Property 6.5. )




/ Let these be denoted by 53(:’.0, ¢); in other words, 53(1',0, £) is the squared coefli- \
cient of variation for the inter-arrival times of Job Type i from an external source that
enter the production process at Step ¢ of the i"" production plan. The characteristics

of the external arrival streams are given, for Workstation j, by

m Vi

W=, X, ¥ I(W(€),k

i=1 =1
and
C2(0, j) = (22'?; lowwu’)n)/n-
i=1¢

The system of equations defined by Property 5.8 or 5.9 can now be used to find the
squared coefficients of variation for the arrival streams to each workstation.

) Rudsn
GU) = Lcko.)+ 3 204 1))
J =1 J

Cz(k i /CE = 1 . :
+P,Juk( \/C\'_L{— )‘*‘I‘Pk,j:l Jorj=1;:"+.n

L il Akpz (1—u2)
_.1 k. J k
~(1-07) b i

ey ! C2k+ c — 1 ‘
bj=Ii,C3(OJ (p ;uk ) ‘/_. 1~Pk,j)

or

-~




! Exa A

mple 6.7. Example 6.6 can now be completed (Fig. 6.1). The associated average
product routing matrix for the-three workstations obtained from Property 6.6 is

0 0 1]
p=l1 o ol. _“ =] L= : oo
| 0 0.538 0 WS 1 WSEG-E WS 2 WS 1 wsa O
Table 6.6 Processing step paradigm for multiple visits to workstations with the data in hours
Step # l 2 3 4 5 - 001 (1) 009 8 g-
Workstation # l 3 2 l ] g_la o 0 10
E[T‘] 3.0 e 37 40 3.6 0 0 0 0 1
CHT) 10 075 125 .75 132 0 0 005 0 0

A1 = 0.2222/hr, A; = 0.2222/hr, A3 = 0.2105/hr, A4 = 0.2105/hr, As = 0.2105/hr.
Ay = 0.4327/hr, A3 = 0.2105/hr, A3 — 0.4327/hr.

-

Pei=| X 2 Z/l B, AW (), k) L(W'(r), ) | / M

=1f{=1r=]




GU) = ek, + 3 M2 1 - i

’1 '11 _
C?'k + ey | ‘
+pk,juk( ( \/E\;— )—!—l—pk,j] for j=1,---.n

The system of equations for computing the coefficients of variation for the average
product arrival streams at each workstation is
gyin . B2 0.2105

; — ) 2 = (.1905C2(2) +0.8328
c:ll) 0.4327(1)+0‘4327 [(1—u3) C2(2) +u3C2(2)] ~(2)
G = o o x [0.538 (1 —u3) C;(3) +0.538u3 Zi i
0.2105 | She - /2

+1-0.538| = 0.3382C%(3) +0.8032

€2(3) = (1-1) C2(1) +4 (C;(l)+\/? ol

The solution to this linear system of equations ¢2 = (1.066, 1.222, 1.238).

- /

) = 0.4315C3(1)+0.7784 .




Table 6.7 The composite processing data for Example 6.6

Workstation £ Ci Uy, E[T;(k)] C> (k)
1 2 0.754 3.486 hr 1.522
2 1 0.780 3.700 hr L2572
3 2 0.657 3.037 hr 1.195

This results 1n the workstation performance measures given in Table 6.8.

Table 6.8 Cycle time and WP results for Example 6.7

Workstation # CT,; CT wIiP
| 6.096 hr 9.582 hr 4.146
2 16.119 hr 19.819 hr 4.172
3 2.930 hr 5.967 hr 2.582

The average total system WIP for the factory is the sum of the three workstation
WIP’s resulting in 10.9 jobs. Thus, by Little’s Law the mean cycle time in the system
15 54.5 hours. Notice that the mean cycle time of a job within the factory is more than
the simple sum of the three workstation mean cycle times because of the reentrant

@ows. O




