
Chapter 6
Memetic Algorithms in Discrete Optimization

Jin-Kao Hao

6.1 Introduction

Discrete optimization concerns in essence the search for a “best” configuration (op-
timal solution) among a set of finite candidate configurations according to a partic-
ular criterion. There are several ways to describe a discrete optimization problem.
In its most general form, it can be defined as a collection of problem instances, each
being specified by a pair (S, f ) [704], where S is the set of finite candidate config-
urations, defining the search space; f is the cost or objective function, given by a
mapping f : S→ R+.

Solving the instance (S, f ) is to find an s∗ ∈ S such that f (s∗) � f (s) for all s ∈ S
(this minimization formulation can easily be transformed into a maximization prob-
lem). Such a configuration s∗ is a globally optimal solution (or simply an optimal
solution) to the given instance.

Given its generality, discrete optimization allows many problems of practi-
cal and theoretical importance to be conveniently formulated. Examples are the
classical problems of general integer programming, permutation problems (e.g.,
traveling salesman problem, bandwidth minimization, linear arrangement), and
constraint satisfaction and optimization problems (satisfiability problems in propo-
sitional logic, graph partitioning, k-coloring). Discrete optimization naturally covers
practical problems of the environment, renewable energy, distribution, infrastructure
design, communications and productivity in the manufacturing and service sectors.

However, discrete optimization problems are known to be difficult to solve in
general. Most of them, in particular those of practical interest, belong to the class
of NP-hard problems, and thus cannot be efficiently solved to optimality. Over the
past decades, important efforts have been made to improve the solution methods
and important progresses have been achieved in both exact and heuristic strategies
in pursuit of optimal or near optimal solutions.
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This chapter concerns the design of Memetic Algorithms (MAs) [615, 617] for
finding optimal or high quality near optimal solutions to hard discrete optimization
problems.

6.2 Survey of Memetic Algorithms for Discrete Optimization

6.2.1 Rationale

From a fundamental point of view, the task of searching for a best solution in a com-
binatorial space is all about a suitable balance between “exploitation” and “explo-
ration” for an effective examination of the given search space. The dual concept of
exploitation and exploration covers two fundamental and complementary aspects of
any effective search procedure. This concept is also known under the term “intensi-
fication” and “diversification” introduced within the Tabu Search (TS) methodology
[317].

Exploitation emphasizes the ability of a method to examine intensively and in
depth specific search areas while exploration is the ability of a method to diversify
the search in order to find promising new search areas. Consequently, if the search
focuses solely on exploitation, it will confine itself in a limited area, fails to visit
other areas of the search space, and may be trapped in poor optima. On the other
hand, a method relying heavily on exploration and overlooking exploitation will lack
capacity to examine in depth a given area and miss out solutions of good quality. To
be effective, a search method thus needs to appropriately conciliate exploitation and
exploration. Memetic Algorithms constitute a very interesting framework offering a
variety of strategies and mechanisms to achieve this general objective.

MAs are hybrid search methods that are based on the population-based search
framework [35, 239] and neighborhood-based local search framework (LS) [393].
Popular examples of population-based methods include Genetic Algorithms and
other Evolutionary Algorithms while Tabu Search and Simulated Annealing (SA)
are two prominent local search representatives. The basic rationale behind a MA is
to combine these two different search methods in order to take advantage of their
complementary search strategies. Indeed, it is generally believed that the population-
based search framework offers more facilities for exploration while neighborhood
search provides more capabilities for exploitation. If they are combined in a suitable
way, the resulting hybrid method can then offer a good balance between exploitation
and exploration, assuring a high search performance.

Like other metaheuristics, MAs are a general optimization framework that can
potentially be applied to various discrete search or optimization problems. Never-
theless, it should be clear that a blind application of MAs (or any other metaheuris-
tics) to a particular problem will not be able to lead to satisfactory solutions. To be
effective, the MA framework must be carefully adapted to the given problem and in-
tegrate problem-specific knowledge within its search operators and strategies. This
is the key point of a successful MA application in practice.



6 Memetic Algorithms in Discrete Optimization 75

6.2.2 Memetic Algorithms in Overview

Memetic Algorithms [615, 617] are a population-based computational framework
and share a number of features with methods like Evolutionary Algorithms [35,
239], and Scatter Search [320]. MAs operate on a set of candidate solutions and
use these solutions to create new solutions by applying variation operators such as
combinations and local improvements.

From a general perspective, a MA is composed of a number of basic components:
a pool of candidate solutions (also called population of individuals) to sample the
search space, a combination operator (crossover) to create new candidate solutions
(offspring) by blending two or more existing solutions, an improvement operator to
ameliorate offspring solutions, and a population management strategy. In addition
to these elements, the MA also needs an evaluation or fitness function to assess the
quality of each candidate solution as well as a selection mechanism to determine the
candidate solutions that will survive and undergo variations.

From an operational perspective, a typical MA starts with an initial population
(see §6.3.4) and then repeats cycles of evolution. Each cycle, also called a genera-
tion, consists of four sequential steps.

1. Selection of parents: Selection aims to determine the candidate solutions that
will survive in the following generations and be used to create new solutions.
Selection for reproduction often operates in relation with the fitness (quality)
of the candidate solutions; high quality solutions have thus more chances to
be chosen. Well-known examples of selection strategies include roulette-wheel
and tournament. Selection can also be done according to other criteria such as
diversity. In such a case, only “distanced” individuals are allowed to survive
and reproduce. If the solutions of the population are sufficiently diversified, se-
lection can also be carried out randomly. The selection strategy influences the
diversity of the population (see also §6.3.3).

2. Combination of parents for offspring generation: Combination aims to create
new promising candidate solutions by blending (suitably) existing solutions
(parents), a solution being promising if it can potentially lead the optimization
process to new search areas where better solutions may be found. To achieve
this, the combination operator is often designed such that it captures the seman-
tics of the targeted problem to ensure the heritage of good properties from par-
ents to offspring. Additionally, the design of the combination operator should
ideally take care of creating diversified offspring. From a perspective of explo-
ration and exploitation, such a combination is intended to play a role of strategic
diversification with a long term goal of reinforcing the intensification. A care-
fully designed combination operator constitutes a driving force of a successful
MA.

3. Local improvement of offspring: The goal of local improvement is to im-
prove the quality of an offspring as far as possible. For this purpose, local im-
provement takes an offspring as its input (current solution) and then iteratively
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Algorithm 10. Memetic Algorithm Template

Input: |P|; // Size of population P1

Output: s∗; // Best solution found2

P← POPGENERATION(|P|); //3

POPEVALUATION(P); // Fitness evaluation of each individual4

s∗ ← best(P); // Record the best solution found so far5

f ∗ ← f (s∗); // Record the fitness of the best solution6

while Stop Condition is not verified do7

(p1...pk)← PARENTSSELECTION(P); // k � 2 parents are selected8

s′ ← RECOMBINATION(p1...pk); // Offspring generation9

s← OFFSPRINGIMPROVEMENT(s′); // Improvement of offspring10

solution by local search
P← POPULATIONUPDATE(s,P); // Population update according11

to a quality-diversity rule
(s∗, f ∗)← BESTSOLUTIONUPDATE(s∗, f ∗,P); // Best solution and its12

fitness are always recorded

endw13

return s∗14

replaces the current solution by another solution taken from a given neighbor-
hood. This process stops and returns the best solution found when a user-defined
stop condition is met. Compared with the combination operator, local improve-
ment plays essentially the role of intensifying the search by exploiting search
paths delimited by the underlying neighborhood. Like combination, local im-
provement is another key component and driving force of a MA.

4. Update of the population: This step decides whether a new solution should be-
come a member of the population and which existing solution of the population
should be replaced. Often, these decisions are made according to criteria related
to both quality and diversity. Such a strategy is commonly employed in meth-
ods like Scatter Search and many Evolutionary Algorithms. For instance, a basic
quality-based updating rule would replace the worst solution of the population
while a diversity-based rule would substitute for a similar solution according
to a distance metric. Other criteria like recency (age) can also be considered.
The policies employed for managing the population are essential to maintain
an appropriate diversity of the population, to prevent the search process from
premature convergence, and to help the algorithm to continually discover new
promising search areas.

The general MA template is described in Algorithm 10 where special attention must
be payed to the design of particular components. The stop condition can be a max-
imum number of cycles (generations), a maximum number of evaluations, a maxi-
mum number of cycles without improving the best solution, a solution quality to be
reached or a lower-bounded threshold for the population diversity.

We deliberately leave out the mutation operator within this MA template. In some
sense, local search can be viewed as a guided macro-mutation operator. However,



6 Memetic Algorithms in Discrete Optimization 77

mutation can also be applied to reinforce population diversity. As a lean design
principle, only necessary components are included in a MA, any unjustified and
superficial elements must be excluded.

6.2.3 Performance of Memetic Algorithms for Discrete
Optimization

The computational performance of a MA depends first on the representation of the
solution space (solution encoding) which should preferably be problem dependent
and ease the design of efficient search operators.

The performance of a MA depends then on the design of its two key search
components: Combination and local improvement operators. Their design should
integrate useful problem-specific knowledge of the given problem in order to ensure
aggressive exploitation and guided exploration.

The performance of a MA is also conditioned by the way the population is man-
aged to promote and maintain a fertile diversity during the search process. Indeed,
much like conventional Evolutionary Algorithms, premature convergence can eas-
ily occur if the population loses its diversity. Diversity management is particularly
important with MAs because of the specific nature of their aggressive and intensi-
fied search strategies. Consequently, it is crucial for a MA to maintain with rigor a
“good” population diversity as long as possible.

The interaction between the components of a MA can directly influence the be-
havior and the performance of the MA. A long or short local search phase after each
combination could change the search trajectories. Similarly, a very effective local
search procedure may weaken the role of the combination operator while a very
strong combination operator may make it less critical to have a highly efficient local
improvement procedure.

Finally, the runtime efficiency of a MA depends for a large part on the choice of
the data structures employed to implement the different components of the MA. A
typical example concerns local improvement procedures that explore the candidate
solutions of a neighborhood and represent the most time-consuming part of a MA.
In such a situation, it is critical to devise appropriate data structures to enable and
streamline a fast neighborhood evaluation (see §6.3.1.3). Otherwise, the computa-
tional overheads will jeopardize the search power of the method.

6.3 Special Design Considerations

6.3.1 Design of Dedicated Local Search

Local improvement is one of the most important components of a MA and ensures
essentially the role of intensive exploitation of the search space. This is typically
achieved either by dedicated local search heuristics (see examples in [460, 523,
524]) or by tailored general neighborhood search methods. In this part, we focus
our discussion on adaptation of local search metaheuristics [393], but a large part
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of the discussion applies to the design of local improvement procedures based on
specific heuristics.

6.3.1.1 Local Search Template

Let (S, f ) be our search problem where S and f are respectively the search space and
optimization objective. A neighborhood N over S is any function that associates to
each solution s ∈ S some other solutions N(s) ⊂ S. Any solution s′ ∈ N(s) is called
a neighboring solution or simply a neighbor of s. For a given neighborhood N, a
solution s is a local optimum with respect to N if s is the best in terms of f among
the solutions in N(s).

The notion of neighborhood can be explained in terms of the move operator.
Typically applying a move mv to a solution s changes s slightly and leads to a
neighboring solution s′. This transition from a solution to a neighbor is denoted
by s′ = s⊕mv. Let Γ (s) be the set of all possible moves which can be applied to s,
then the neighborhood N(s) of s can be defined by: N(s) = {s⊕mv|mv ∈ Γ (s)}.

A typical local search algorithm begins with an initial configuration s in S and
proceeds iteratively to visit a series of configurations following the neighborhood.
At each iteration, a particular neighbor s′ ∈ N(s) is sought to replace the current
configuration and the choice of s′ is determined by the underlying metaheuristic and
by referring to the quality of the neighboring solution. For instance, a strict Descent
algorithm always replaces the current solution s by a better neighbor s′ while tabu
search replaces the current solution by a best neighbor s′ even if the latter is of
inferior quality. Still with simulated annealing, the transition from s to a randomly
selected neighbor s′ is conditioned by a changing probability.

6.3.1.2 Neighborhood Design

The success of a LS algorithm depends strongly on its neighborhood. The neigh-
borhood defines the subspace of the search problem to be explored by the method.
For a given problem, the definition of the neighborhood should structure the search
space such that it helps the search process to find its way to good solutions.

The choice of neighborhood is conditioned by the representation (genotype) used
to encode the candidate solutions of the search space (phenotype). It may further
depend on the structure and constraints of the problem on hand. Here we briefly
review some neighborhoods associated to three conventional representations, which
have a variety of applications.

• Binary representation: With this representation, each solution of the search
space is coded by a binary string. Binary representation is very popular in dis-
crete optimization due to the fact that many problems are naturally formulated
with binary variables. Typical examples include SAT/Max-SAT, Knapsack, Un-
constrained Quadratic Optimization, graph bi-partitioning etc. For these binary
problems, two basic neighborhoods are defined by the k- f lip and Swap move
operators. The k- f lip move changes the values of k (k �1) variables. So any
neighbor s′ ∈N(s) has a Hamming distance of k to solution s. A larger k induces
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a larger (and stronger) neighborhood. Nevertheless, whether a larger neighbor-
hood should be preferred in practice depends on the computational cost to eval-
uate the neighborhood. Swap exchanges the values of two variables that have
different values. Note that Swap can be simulated by two 1- f lip moves.

• Permutation representation: Here, each solution of the search space corre-
sponds to a permutation π : {1..n} → {1..n}. Permutation representation has
a large range of applications in discrete optimization. Prominent examples in-
clude Traveling Salesman Problem, Flow-Shop/Job-Shop scheduling, Linear
Arrangement, Bandwidth Minimization etc. Two basic neighborhoods for this
representation are available using Swap and Rotation moves. Given a permu-
tation (solution) π , The Swap move exchanges π(i) and π( j) for some i and
j (i �= j). If π ′ is a neighbor of π by swapping i and j, then π ′(k) = π(k) for
k �= i, j, π ′(i) = π( j) and π ′( j) = π(i). The Rotation move rotates all the val-
ues between π(i) and π( j) for some i < j. Thus, if π ′ is a rotation neighbor of
π obtained with i < j, then π ′(k) = π(k)+ 1 for i � k < j, π ′( j) = π(i), and
π ′(k) = π(k) for all other k. Note that Rotation(i, j) can be simulated by j− i
successive Swap moves starting with Swap(i, i+ 1).

• Integer representation: With this representation, each solution of the search
space corresponds to an integer vector whose values are taken from some dis-
crete domains. Integer representation is very useful and convenient for many
constraint satisfaction and optimization problems. A common neighborhood is
defined by a “one-change” move that consists in replacing the current value of
a single variable by a new domain value. The set of candidate variables under
consideration for a value change can be identified with a number of rules spe-
cific to the problem at hand. For instance, if the search algorithm deals with
unfeasible solutions, i.e. some variables are receiving conflicting values relative
to some constraints, the set of candidate variables can be constituted of the sub-
set of conflicting variables [289, 291, 672]. Such a neighborhood is typically
employed in local search algorithms for solving Constraint Satisfaction Prob-
lems. More generally, candidate variables for a value change can be identified
as those that are critical for improving the objective function or for reaching the
feasibility.

These neighborhoods can be applied directly to a given problem if the problem
fits well the required representation. A common practice is to adapt a conventional
neighborhood with problem-specific knowledge. Moreover, in some situations, it is
useful to investigate the possibility of multiple neighborhoods that can be applied at
different stages of the search process (see §6.3.1.4 below).

6.3.1.3 Neighborhood Evaluation

Another design issue that arises is the evaluation of a given neighborhood. Indeed, a
local search procedure moves iteratively from the current solution to a new solution
chosen within the neighborhood. To make this choice, local search needs to know
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the cost variation (also called the move value) between the current solution s and a
candidate neighbor s′ ∈ N(s). The move value indicates whether the neighbor s′ is
of better, worse or equal quality relative to s. Let Δ f = f (s′) - f (s) denote this move
value.

• Incremental evaluation: Basically, there are two ways to obtain Δ f for a neigh-
bor. The trivial way is to calculate f (s′) from “scratch” using the objective func-
tion1 f . Doing this way may be expensive if f needs to be evaluated very often
or if the evaluation of f itself involves complex calculations. A more efficient
alternative aims to derive the value of f (s′) from the value f (s) by updating
only what is strictly necessary. Indeed, if a neighbor s′ is close to its initial so-
lution s, which is true for many neighborhoods, then the evaluation of f (s′) can
be carried out in this incremental manner. For a number of basic neighborhoods,
like those shown previously, such an incremental evaluation is often possible.

• Full search of neighborhood: The incremental evaluation can be applied to all
the neighbors of a given neighborhood relation. In this case, it is generally use-
ful to investigate dedicated data structures (call it Δ -table) to store the move val-
ues for all the neighbors of the current solution. Δ -table provides a convenient
way to know the quality of each neighbor and enables an efficient search of the
full neighborhood. With such a Δ -table, the local search algorithm can decide
easily at each iteration which neighbor to take according to its search strategy.
For instance, a best-improvement descent algorithm will take the move that is
identified by the most negative value in the Δ -table to minimize the objective
function. After each move, the Δ -table (often only a portion of it) is updated
accordingly using the incremental evaluation technique to propagate the effect
of the move. Δ -table is a very useful technique for local search algorithms. This
is particularly the case for descent-based methods like Tabu Search where a best
neighbor needs to be identified (see examples in [393]).

• Approximative evaluation: The practical usefulness of Δ -table depends on both
the complexity and the number of updates needed after each move transition.
It may happen that, the move value can not be incrementally calculated or the
Δ updates need to change a large portion of Δ -table. In this case, it would be
useful to replace the initial evaluation function by a (fast) approximative eval-
uation function [424]. More generally, approximate evaluation is useful if the
evaluation function is computationally expensive to calculate or if the function
is ill-defined.

• Order of evaluation: If the neighborhood is not completely searched, one must
decide the order in which the neighborhood is explored. For instance, the first-
improvement descent technique moves to any improving neighbor. If there are
several improving neighbors, the descent search picks the “first” one encountered

1 For the reason of simplicity, the term “objective function” is used here. A more precise
term is “evaluation function”, see §6.3.4.
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in the order the neighbors are examined. To allow such a method to increase its
search diversity, a random order may be preferred [704].

6.3.1.4 Combination of Neighborhoods

Very often, different neighborhoods may be available, enabling alternative ways to
explore the search space. In such a situation, it is interesting to consider combined
use of multiple neighborhoods. For illustrative purpose, consider two neighborhoods
N1 and N2. Then one can consider at least three ways to use them in a combined way.

First, neighborhood union N1 ∪N2 includes all the neighbors of the two under-
lying neighborhoods, so that any member of N1 and N2 is a member of N1∪N2. A
local search algorithm using this combined neighborhood selects the next neighbor-
ing solution among all the solutions in both neighborhoods. This combination has
no sense if one neighborhood is fully included in the other one.

With Probabilistic neighborhood union N1�N2, a neighbor solution in N1 (or N2)
belongs to N1�N2 with probability p (resp. probability 1-p). A local search algo-
rithm using this combined neighborhood selects at each iteration the next neighbor
from N1 with probability p and from N2 with probability 1-p.

Token-ring combination N1→ N2 is time-dependent and defined alternatively ei-
ther by N1 or N2 according to some pre-defined conditions [209]. A local search
algorithm using this combined neighborhood cycles through these neighborhoods.
It typically starts with one neighborhood until the search stagnates, then changes to
the other neighborhood until the search stagnates again to switch back to the first
neighborhood and so on.

The advantage of combined neighborhood was already demonstrated a long time
ago in [524] for solving the Traveling Salesman Problem. More generally, the is-
sue of transitioning among alternative neighborhoods was discussed with the Tabu
Search framework and strategic oscillation design in [312]. More recent examples of
local search methods focusing on multiple neighborhoods include Variable Neigh-
borhood Search [363], Neighborhood Portfolio Search [209] and Progressive Neigh-
borhood Search [323]. Examples of studies on neighborhood combinations can be
found in [353, 539].

6.3.2 Design of Semantic Combination Operator

6.3.2.1 Solution Combination

Combination is another key component of a MA and constitutes one leading force
to explore the search space. The basic idea of combination is very appealing since
it provides a very general way of generating new solutions by mixing existing solu-
tions. Contrary to local changes of local improvement, combination can bring into
new solutions more useful information, that may be beneficial for a healthy evolu-
tion of the search process.

As a first step, it would be tempting to consider the application of a blind (ran-
dom) crossover operators for solution combinations. Doing this has the advantage
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of ease of application. However, one question should be asked before this approach
is attempted: Is the crossover operator meaningful with respect to the optimization
objective? If the answer is negative, the crossover operator is probably not appropri-
ate and the sole role it would play in this case would be to introduce some random
diversification in the search process.

In practice, instead of applying blind crossovers, it is often preferable to consider
dedicated combination operators that have strong “semantics” with respect to the
optimization objective. A semantic combination aims to pass intrinsic good proper-
ties from parents to offspring. The design of such a combination operator is far from
trivial and in fact represents a challenging issue. Although there are some theoretical
guidances, the discovery of such a semantic combination operator in practice relies
basically on a deep analysis and understanding of the given problem. Compared
with the design of local search procedures, the design of a meaningful combination
operator constitutes probably one of the most creative parts of an effective MA.

6.3.2.2 Theoretical Foundations

The schemata theory [389] and the building block hypothesis [325] are often men-
tioned to explain (partially) the performance of Genetic Algorithms. Intuitively,
building blocks are promising patterns of solutions that can be progressively as-
sembled by crossover to get improved solutions. Given that this theory is defined
for binary and simple Genetic Algorithm, it is not directly applicable in the con-
text of MAs. Nevertheless, assembling building blocks to generate new solutions
remains an appealing idea. In [750, 753], the concept of forma is introduced to
generalize the schemata theory. A formal framework is even proposed to try to cap-
ture some fundamental aspects of MA in [752]. The forma theory suggests a set
of general principles for the design of solution representations and recombination
operators. According to this theory, a suitable recombination operator is required to
fulfill two conditions called respect and proper assortment. Intuitively, the respect
condition advocates the heritage of shared characteristics of parents to offspring,
while proper assortment ensures the heritage of desirable characteristics of each
parent by their offspring. This is in accordance with the general principle of con-
serving good features through inheritance and discarding bad features developed in
Grouping Genetic Algorithms [248].

6.3.2.3 Design of Combination Operator

These abstract considerations only provide us with very general guidances for de-
signing recombination operators. For a particular problem, it is still necessary to find
out what are the building blocks (interesting patterns or characteristics) of solutions
that can be assembled and inherited through the recombination process. Unfortu-
nately, there is no short-cut to this quest and a fine analysis and deep understanding
of the given problem is indispensable to find useful clues.

First, one can analyze the samples of optimal or high quality solutions to possibly
identify regular patterns shared by these solutions. Indeed, if such a pattern exists,
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then the recombination operator can be constrained to conserve the pattern from the
parent solutions and to avoid breaking the pattern. Alternatively, the recombination
operator can also be encouraged to promote the emergence of favorable building
blocks. For instance, such an analysis applied to the Traveling Salesman Problem
shows that high quality local optima share sub-tours [523, 524]. This property has
been used by several highly successful crossover operators which conserve common
edges or sub-tours in offspring solutions [286, 636, 648, 720, 931]. Similarly, for
the graph k-coloring problem, an analysis of coloring solutions discloses that some
nodes are always grouped to the same color class (i.e. colored with the same color).
This characteristic has helped to devise powerful combination operators, as shown
in [217, 290] and in [292, 537, 549, 726] with multi-parents.

6.3.2.4 Multi-Parent Combination

Combination may operate with more than two parents. Multiple parent combination
is even a general rule for the Scatter Search metaheuristic which uses, in its original
form, linear combinations of several solutions to create new solutions [308]. Al-
though there is no theoretical justifications, the practical advantage of multiple par-
ent recombination was demonstrated in several occasions for discrete optimization.
For instance, for the graph k-coloring problem, several recent and top-performing
algorithms integrate multiple parent combination [292, 537, 549, 726], where color
classes from different solutions are assembled to build offspring colorings. More
generally, when multiple solutions are used for creating a new solution, one can de-
fine special rules to score the solution components of each parent solution and use
strategic voting rules to combine components from different parents solutions.

A question that arises for multi-parent combination is how to determine the num-
ber of the parents. By using two parents, the offspring is expected to inherit 50%
material from each parent. The contribution of each parent to the new solution de-
screases with an increasing number of parents. If the building blocks from different
parents are independent from one another, taking more parents into account would
be interesting to build good and diversified offspring. Otherwise, if a building block
from a parent is epistatic with respect to the building blocks of other parents, blend-
ing more parents means more disruption, and thus should be avoided.

6.3.3 Population Diversity Management

Population diversity is another important issue that should be considered in the de-
sign of an effective MA [290, 726, 836]. If the population diversity is not properly
managed, the population will converge prematurely and the search process stops
with poor local optima. This is particularly true when a small population is used
by the MA. In what follows, we first provide some precisions about the nature of
diversity and explain how fertile diversity can be promoted and maintained within a
population. Note however that diversity is not interesting per se within a MA. The
ultimate goal of population diversity is to help the search process not only to avoid



84 J.-K. Hao

premature converge, but also to continually discover interesting new solutions in
order to explore non-visited promising search areas. See also Chapter 10.

6.3.3.1 Diversity

Population diversity can be measured by a similarity (or distance) metric applied
to the members of the population. The metric can be defined either on the solution
representation level (genotype metric) or solution level (phenotype metric) [325].
For instance, pair-wise Hamming distance can be used as a genotype metric to mea-
sure population diversity. Diversity can also be measured in terms of entropy [267]
or by the so-called moment of inertia [614]. Genotype metric is usually problem
independent, and thus may or may not reflect the intrinsic diversity of a population
with respect to the given optimization objective.

Population diversity can also be measured at the phenotype level over the solu-
tion space. For instance, for partition problems like graph k-coloring, the distance
between two partitions can be measured by the so-called transfer distance which
is the minimum number of elements that need to be moved between classes of one
partition so that the resulting partition becomes the other partition [189, 763]. A phe-
notype metric is defined over the solution space and thus is more likely to measure
the real diversity of a population.

In order to observe suitably the population diversity, it is useful to first determine
the most appropriate distance or similarity metric with respect to the optimization
objective of the given problem. Moreover, if the population diversity needs to be
continually monitored, it becomes important to pay attention to the cost of comput-
ing the underlaying metric.

6.3.3.2 Promoting and Maintaining Useful Diversity

Population diversity can be promoted and managed at several levels of a MA.
One evident possibility is to define specific selection rules to favor the selection
of distanced parents for mating. Another possibility concerns the variation opera-
tors which can be designed in such a way that they favor the generation of diverse
and varied offspring. For instance, the “Distance Preserving Crossover” introduced
in [286, 588] is constrained to generate an offspring which is at the same distance
from both parents. More generally, the path-relinking type of combinations typi-
cally construct offspring solutions by considering both the solution quality and its
distance to its parent solutions [320] (see also [538] for an example).

Population diversity can also be controlled by the offspring acceptation and re-
placement strategies. Specifically, this can be done according to both solution di-
versity and quality. For instance, in [726] a minimum diversity-quality threshold is
imposed between the solutions of the population. The acceptation of a new offspring
is conditioned not only by its quality, but also by its distance to existing solutions.
Similarly, diversity and quality are considered to select the victim solution to be
replaced by the offspring.
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Other useful ideas for diversity preservation can be found in the areas of Genetic
Algorithms. Well-known examples include sharing [327] and crowding [204, 546].

6.3.4 Other Issues

In addition to the components mentioned until now, the design of an effective
Memetic Algorithm should take into account a number of other considerations
which are briefly discussed in this section.

• Initial population: There are basically two ways to obtain an initial population:
Random generation and constructive elaboration. While random generation is
easy to apply, it can hardly generate initial solutions of good quality. To im-
prove the basic random generation method, a simple sampling technique can be
applied. Let P be the population size, then one can generate K > P solutions
and then retain only the P “best” ones. Initial generation by construction can be
used if some fast greedy heuristics are available for the given problem. Notice
that, in this case, the greedy heuristics must be randomized such that each ap-
plication leads to a different solution. Another issue that can be considered at
the initialization stage is to take care of building a diversified population. This
can be achieved by controlling the distance between each new solution and the
existing solutions of the population. Only distant new solutions are allowed to
join the population.

• Distance: At several places, MAs may need to measure the distance between
two solutions or between a solution and a group of solutions. For instance, par-
ents selection may operate in such a way that the selected parents are sufficiently
distant. Similarly, a population management strategy may decide the accepta-
tion or rejection of an offspring by considering its distance to the members of
the population. When an operation refers to the notion of distance, it is prefer-
able to employ an appropriate distance metric which is meaningful with respect
to the given problem. For instance, for partition problems like graph coloring
(see §6.4.1), Hamming distance is not a suitable metric to characterize the dif-
ference of two partitions. Instead, transfer distance between partitions should
be preferred. Once again, the choice of the distance metric should ideally be
correlated with the semantics of the problem on hand.

• Rich evaluation function: Evaluation function assesses the quality of a candi-
date solution with respect to the optimization objective and orients the search
method to “navigate” through the search space. A good evaluation function is
expected to be able to distinguish each solution from the other solutions and thus
to effectively guide the search method to make the most appropriate choice at
each iteration. Very often, the initial optimization objective f is directly used as
evaluation function. However, such a function may not be sufficiently discrim-
inant to distinguish different solutions. To improve the discriminating power,
it is useful to incorporate in the evaluation function additional information,
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e.g. relative to the structure of the problem instance to be solved. Examples can
be found in [248, 431, 772]. Moreover, when constrained optimization prob-
lems are considered, some constrains may be hard to satisfy, and thus are re-
laxed. Among various constraint relaxation techniques, a common practice is
to integrate the relaxed constraints into the evaluation function as a (weighted)
component or as a part of a multi-component evaluation function (see examples
in [316, 902, 903]).

• Constraints: The constraints in the considered problem may influence the de-
sign of some MA components. For instance, suppose that the MA algorithm is
expected to explore only feasible solutions. Then one must decide whether a
combination operator is constrained to create only feasible solutions. If infea-
sible offspring is allowed, it is necessary to consider a dedicated mechanism to
repair the broken constraints. Similarly, neighborhood design can take into con-
sideration the constraints to identify eligible moves. For instance, in feasibility
search problems, this is often done by identifying problem variables involving
violated constraints and restricting the set of authorized moves to those defined
on these conflicting variables. Finally, as previously stated, constraints that are
difficult to solve can be used in the design of the evaluation function.

• Connections with Scatter Search and Path Relinking: As discussed in [311]
and [317] (Chapter 9), the MA framework shares ideas with Scatter Search and
Path Relinking [313, 320]. These latter methods provide unifying principles for
joining solutions based on generalized path constructions (in both Euclidean
and neighborhood spaces) and by using strategic design. Solution combination
in Scatter Search originated historically from strategies for combining decision
rules and combining constraints. In Scatter Search, dispersed new solutions are
created from a set of reference solutions by weighted combinations of subsets of
the reference solutions that are selected as elite solutions. With Path Relinking,
offspring solutions are generated by exploring, within a neighborhood space,
trajectories that connect two or more reference solutions. One notices that the
reference solutions or subsets of them can be considered as parent solutions for
combination while combination resorts to diverse strategies such as attribute
voting and weighting.

6.4 Case Studies

In this section, we show two case studies of quite different nature with the purpose
of showing how these issues can be effectively implemented in practice. We partic-
ularly focus on the design of combination and local search operators.
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6.4.1 Graph Coloring Problems

6.4.1.1 Problem Description

Given an integer k and a undirected graph G = (V,E) with a set V of vertices and a
set E of edges, a legal k-coloring of G is a partition of V into k distinct color classes
such that each color class is composed of pairwise non-adjacent vertices. The graph
k-coloring problem (k-COLOR) aims at finding a legal k-coloring for a fixed k while
the graph coloring problem (COLOR) determines the smallest k for a given graph G
(its chromatic number χG) such that G has a legal k-coloring. Since COLOR can be
handled by solving a series of k-COLOR with decreasing k values, we only consider
here k-COLOR.

For a given k-COLOR instance, i.e. an integer k and graph G = (V,E), let s =
{C1,C2...Ck} denote a partition of V into k distinct color classes such that each Ci

(i ∈ {1,2...k}) contains all the vertices that are colored with color i. Let S denote all
such partitions. For any s ∈ S, define its conflict number f (s) to be the number of
pairs of adjacent vertices x and y ({x,y} ∈ E) belonging to a same color class of s.
Then k-COLOR can be solved by minimizing f (s); f (s)=0 implies that s is a legal
k-coloring, i.e. all its color classes Ci are conflict-free.

Notice that among the large number of existing heuristic algorithms for k-
COLOR, Memetic Algorithms are certainly among the most powerful ones and
provide the best results on the well-known DIMACS benchmark instances of this
well-known NP-complete problem.

6.4.1.2 Partition Crossovers

In order to design a semantic combination operator, let us try to get an idea about the
possible “building blocks” for our problem. The goal of k-COLOR is to determine a
set of k distinct conflict-free color classes. In this context, color classes can be con-
sidered our basic “building blocks”. If there are several “good” color classes among
some candidate solutions, then these color classes can favorably be recombined to
obtain new candidate solutions. This idea was first explored by the Greedy Partition
Crossover (GPX) described in [290] and the Union of Independent Sets crossover
in [217], which are also related to the design of grouping crossovers described in
[248].

Operating with two parent k-colorings s1 and s2, GPX builds step by step the k
classes C0

1 , . . . ,C0
k of the offspring s0. At the first step, GPX creates C0

1 by choosing
a largest class from one parent and removes its vertices from both parents s1 and s2.
GPX repeats then the same operations for the next k-1 steps, but alternates each time
the parent considered. If some vertices remain unassigned at the end of these k steps,
they are randomly assigned to one of the k color classes. The alternation between the
parents aims at a balanced mixture of information from both parents and avoiding
the dominance of one parent over the other one during the recombination.

Table 6.1 shows an example with 3 color classes (k = 3) and 10 vertices repre-
sented by capital letters A,B,· · · ,J.
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Table 6.1. The Greedy Partition Crossover: An example from [290]

parent s1 → A B C D E F G H I J C0
1 := {D,E,F,G} A B C H I J

parent s2 C D E G A F I B H J remove D,E,F and G C A I B H J

offspring s D E F G

parent s1 A B C H I J C0
2 := {B,H ,J} A C I

parent s2 → C A I B H J remove B,H and J C A I

offspring s D E F G D E F G B H J

parent s1 → A C I C0
3 := {A,C} I

parent s2 C A I remove A and C I

offspring s D E F G B H J D E F G B H J A C

The basic idea underlying GPX was also explored with multiple parent combina-
tion operators [292, 352, 537, 549, 726]. Using multiple parents for combination is
fertile for k-COLOR since this offers more possibilities to obtain good (large) color
classes for each step of the recombination operation. By generalizing two parents
to multiple parents, refined and additional strategies were also introduced to make
the combination process as effective as possible. For instance with the AMaPX op-
erator of [537], in order to favor the creation of diversified offspring, each time a
color class from a parent is transmitted to the offspring, this parent’s k-coloring will
not be considered for the next few steps of offspring building. In [726], in order to
measure the goodness of the color classes of the parent colorings, the combination
operator takes into account the size of each color class, the number of conflicting
vertices as well as the degrees of the vertices in the color class.

A question that arises when multiple parents are used is how to determine the
number of parents. It is clear that by using more parents, fewer classes will be trans-
mitted from each parent to the offspring and this also implies that the class blending
from each parent is also more disrupted. An analysis of the relations between the
number of vertices, the number of color classes and the number of parents permits
to identify a heuristic rule to fix the right number of parents [726].

In [292], the combination operation is performed within a slightly different con-
text. The algorithm maintains a pool of conflict-free color classes obtained dur-
ing the search process. From time to time, these color classes are used to generate
new k-colorings. Other combination operators using similar ideas are investigated
in [217, 352, 549].

6.4.1.3 Local Improvement by Tabu Search

In memetic coloring algorithms, Tabu Search is frequently used for local improve-
ment to ameliorate a new offspring created by the combination operator. For illus-
tration purpose, we use the TS algorithm described in [290] as an example. It uses
the constrained “one-change” move described in §6.3.1.2 such that a neighbor s′ of
a given configuration s is obtained by moving a single conflicting vertex v from a
color class Ci to another color class Cj. When such a move < v, i > is performed, the
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couple < v, i > is classified tabu for the next tl iterations. Therefore, v cannot be reas-
signed to the class i during this period, unless moving v back to the color class i leads
to a configuration better than the best configuration found so far (aspiration crite-
rion). The tabu tenure tl for a move is variable and depends on the number nbCFL of
conflicting vertices in the current configuration: tl = Random(A)+α ∗nbCFL where
A and α are two parameters and the Random(A) function returns a random number
from {0, · · · ,A−1}. To implement the tabu list, it is sufficient to use a |V |×k table.

The algorithm memorizes and returns the most recent configuration s∗ among the
best configurations found: After each iteration, the current configuration s replaces
s∗ if f (s) � f (s∗) (and not only if f (s) < f (s∗)). The rational to return the last best
configuration is that we want to produce a solution which is as far away as possible
from the initial solution in order to better preserve the diversity in the population.

6.4.2 Maximum Parsimony Phylogeny

6.4.2.1 Problem Description

Phylogenetics is the study of evolutionary relationships among various groups of
organisms (for example, species or populations). These connections are represented
graphically through phylogenetic trees. Computational phylogenetics aims to infer
phylogenetic trees from molecular data such as protein or DNA sequences [256].
The main phylogenetic approaches include methods using a distance-matrix, the
maximum likelihood or maximum parsimony criterion.

Maximum parsimony phylogeny generally takes as input a multiple sequence
alignment which is a matrix M of characters composed of n lines (related to a set
S of species, where |S| = n) and k columns which represent the characters of the
sequences [255]. Each sequence is also called a taxon. Each character of the matrix
belongs to an alphabet Σ . A phylogenetic tree T of the given input is a binary tree
such that (1) the leaves of T are the set of n species, and (2) each internal node
is induced by the sequence of parsimony of its two descendant sequences. Given
two sequences S1 =< x1, · · · ,xk > and S2 =< y1, · · · ,yk > with ∀i ∈ {1..k},xi,yi

belonging to the power set P(Σ = {−,A,C,G,T}), the sequence of parsimony
P(S1,S2) =< z1, · · · ,zk > of S1 and S2 is given by ([264]) :

∀i,1 � i � k,zi =

{
xi∪ yi, if xi∩ yi = /0

xi∩ yi,otherwise
(6.1)

The score of the sequence of parsimony defines the “distance” separating its two
descent sequences:

fP(S1,S2) =
k

∑
i=1

ci where ci =

{
1, if xi∩ yi = /0

0,otherwise
(6.2)
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Algorithm 11. The general DiBIP crossover scheme
Input: T1, T2, δ , Δ ,⊕, Λ
Output: A child tree T ∗

1. Apply the tree-to-distance operator Δ to each parent tree Ti (i=1,2) to obtain the
corresponding distance matrix Di = Δ (Ti);

2. Apply the matrix operator ⊕ to D1 and D2 to obtain D∗: D∗ ← D1⊕D2;
3. Apply the distance-to-tree operator Λ to D∗ to obtain a child tree: T ∗ ←Λ (D∗).

Let T be a binary parsimony tree with n leafs or species. T has then n−1 sequences
of parsimony (internal nodes). Let I denote the set of these internal nodes. The Fitch
parsimony score f (T ) of T is defined as follows:

f (T ) =∑
i∈I

fi(T ) (6.3)

The aim of the Maximum Parsimony problem (MP) is then to find a most parsi-
monious phylogenetic tree T ∗ such that T ∗ minimizes the parsimony score. Since
there are ∏n

i=3(2i− 3) possible binary trees with n leafs, this problem is a highly
combinatorial search problem. The MP problem is computationally difficult since
its associated decision problem is equivalent to the NP-complete Steiner problem in
a hypercube [277]. MP has been subject of many studies for many years. Among
them, neighborhood-based local search and various hybrid algorithms are certainly
the most popular solution methods. In what follows, we show a Memetic Algorithm
called HYDRA [767], which combines a dedicated tree crossover called DiBIP
[322] and a progressive neighborhood local search method [323].

6.4.2.2 Distance-Based Information Preservation Crossover

First, let us notice that conventional tree crossovers known in genetic program-
ming are not suitable here. The Distance-Based Information Preservation crossover
(DiBIP) is specifically designed for the MP problem. DiBIP is based on a topolog-
ical distance between species (leafs) and aims to preserve common properties of
parents in terms of this distance between species. For instance, two species that are
close (or far) in both parents should stay close (resp. distant) in the offspring. Given
two parents trees, the DiBIP crossover is realized in three steps: Calculate a distance
matrix for each parent tree, then combine the two resulting matrices to get a third
matrix and finally create a child tree from this last matrix.

The general DiBIP crossover scheme is described in Algorithm 11 where T1 and
T2 denote two parents trees. δ is a distance metric to measure the distance of each
pair of species of a tree T , Δ a tree-to-distance operator to obtain a distance matrix of
a tree,⊕ a matrix operator to combine 2 distance matrices to produce a new distance
matrix,Λ a distance-to-tree operator to construct a tree from a given distance matrix.

A specific DiBIP crossover operator is obtained once δ , Δ , ⊕, and Λ are pro-
vided. The distance measure δ should be ideally correlated to the evolutionary
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changes between species. For instance, 2 species separated in the tree by a small
number of evolutionary changes should have a smaller distance than 2 species sep-
arated by a large number of changes. The distance measure should additionally be
tree-topology dependent. In this sense, the length of the elementary path between
2 species is a possible option while Hamming distance is not suitable here because
this metric is totally independent of tree topologies.

Moreover, since we want to preserve representative features of the parents during
the crossover operation, a valid matrix operator⊕ should favor such an inheritance
from parents to offspring and meet some relation preservation property. For instance,
if a pair of species (a,b) is closer than another pair (c,d) in both parents, then this
relation should be conserved. Consider the operation⊕ such that for a pair of species
(i, j), (D1⊕D2)(i, j) = α.min{D1(i, j),D2(i, j)}+(1−α).max{D1(i, j),D2(i, j)}
with α ∈ [0,1]. This indeed defines a valid ⊕ operator. Furthermore, this definition
offers in fact many possibilities and seems particularly relevant to MP. For instance,
the arithmetic average (α = 0.5) and the max operator max (α = 0) are 2 special
cases. At last, let us mention that the arithmetic addition is another simple valid ⊕
operator.

We now show a concrete example. Given two species i and j, define their distance
δi j to be the topological distance, i.e. the length of the elementary path between the
respective ascendants of i and j, (minus 1 if the path contains the root of the tree T ).
The matrix operator⊕ is the addition + such that D(i, j) = D1(i, j)+D2(i, j), which
satisfies the relation preservation property previously mentioned. The distance-to-
tree operator Λ is a non-deterministic variant of the well-known UPGMA (Un-
weighted Pair Group Method with Arithmetic Mean) method [833]. Figs. 6.1 and
6.2 show an application of this crossover operator. One observes that the closeness
of species in both parents is conserved in the child. This observation applies equally
to distant species.

6.4.2.3 Progressive Neighborhood Search

For local improvement, HYDRA uses Progressive Neighborhood Search (PNS)
which operates with a variable-size neighborhoods [323]. Given a parsimony tree
T , a neighboring tree T ′ is typically obtained by a move that consists in cutting a
sub-tree from T and reinserting the sub-tree elsewhere in the initial tree. If a mean-
ingful metric can be defined to measure the distance between the cutting and insert-
ing points, then it would be possible to define neighborhoods of variable sizes. In
[323], the topological distance δ shown in Section 6.4.2.2 is used for this purpose.
A distance parameter d is introduced to constraint the distance between the pruned
edge i and the edge j receiving the insertion such that δi j � d.

So, setting d = ∞ leads to a large neighborhood where the pruned edge (with
its subtree) can be reinserted anywhere in the tree. Consequently, the topological
change can be important. This case corresponds in fact to the well-known Subtree
Pruning Regrafting neighborhood [862] whose size equals 2(n− 3)(2n− 7) [12].
Reversely, setting d = 1 gives a small neighborhood where neighboring trees are
close to the current tree. This case corresponds to another well-known neighborhood
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Parent 1 : T1 Parent 2 : T2

D1 = Δ(T1)

A B C D E F G H I J K L M N

A - B

B 6 - C

C 5 3 - D

D 1 5 4 - E

E 5 5 4 4 - F

F 5 5 4 4 2 - G

G 5 3 0 4 4 4 - H

H 5 5 4 4 0 2 4 - I

I 0 6 5 1 5 5 5 5 - J

J 5 1 2 4 4 4 2 4 5 - K

K 2 4 3 1 3 3 3 3 2 3 - L

L 7 1 4 6 6 6 4 6 7 2 5 - M

M 5 5 4 4 2 0 4 2 5 4 3 6 - N

N 7 1 4 6 6 6 4 6 7 2 5 0 6 -

D2 = Δ(T2)
A B C D E F G H I J K L M N

A - B

B 8 - C

C 4 6 - D

D 1 7 3 - E

E 0 8 4 1 - F

F 9 1 7 8 9 - G

G 4 6 0 3 4 7 - H

H 2 6 2 1 2 7 2 - I

I 6 4 4 5 6 5 4 4 - J

J 7 1 5 6 7 2 5 5 3 - K

K 4 4 2 3 4 5 2 2 2 3 - L

L 9 1 7 8 9 0 7 7 5 2 5 - M

M 6 2 4 5 6 3 4 4 2 1 2 3 - N

N 6 4 4 5 6 5 4 4 0 3 2 5 2 -

Fig. 6.1. Application of the DiBIP Tree Crossover [322] – The parents

called Nearest Neighbor Interchange [922] which swaps two adjacent branches of
the tree leading to (2n− 6) neighbors [770]. By varying the parameter d, one gets
neighborhoods of intermediate sizes.

The Progressive Neighborhood Search is based on this parametric neighborhood
and its neighborhood changes during the search process by varying the value of
d. In the particular MP context, PNS carries out a descent search starting with
a large neighborhood (i.e. with large d) and reduces progressively the neighbor-
hood. Indeed, at the beginning of the search, it is possible to obtain strong quality
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D∗ = D1⊕D2

A B C D E F G H I J K L M N

A - B

B 14 - C

C 9 9 - D

D 2 12 7 - E

E 5 13 8 5 - F

F 14 6 11 12 11 - G

G 9 9 0 7 8 11 - H

H 7 11 6 5 2 9 6 - I

I 6 10 9 6 11 10 9 9 - J

J 12 2 7 10 11 6 7 9 8 - K

K 6 8 5 4 7 8 5 5 4 6 - L

L 16 2 11 14 15 6 11 13 12 4 10 - M

M 11 7 8 9 8 3 8 6 7 5 5 9 - N

N 13 5 8 11 12 11 8 10 7 5 7 5 8 -

Child : T ∗ =Λ (D∗)

Fig. 6.2. Application of the DiBIP Tree Crossover [322] – The offspring

improvement by important topological modifications of the tree with large d. When
the search progresses and the quality of the trees becomes better and better, only
small improvements can be expected with small tree modifications. It is thus more
judicious to switch to smaller and small neighborhoods to accelerate the search.

One notices that PNS shares some features with Variable Neighborhood Search
(VNS) [363]. However, contrary to VNS, the neighborhoods explored by PNS are
not systematically of increasing sizes. Within the context of our Maximum Parsi-
mony problem, PNS even progressively reduces its neighborhood.

6.5 Conclusions

In this chapter we have presented the basic concepts of Memetic Algorithms for
Discrete Optimization. Focus is given to the key design issues of an effective MA
algorithm. We have explained the usefulness of a deep study and understanding of
the optimization problem on hand. We have insisted on the importance of a careful
adaptation of the general search strategies offered by the MA framework, a suitable
incorporation of problem specific knowledge in different components of the MA
as well as a logical integration of these components. The pursuit goal is clearly to
build an effective MA algorithm that is able to ensure a balanced exploitation and
exploration of the search space.
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It should be clear that a blind MA application would have little chance to deliver
good results for difficult optimization problems. High performance can only be pos-
sible by a disciplined and careful specialization of the general MA framework to
the targeted problem. It is equally important to apply the “lean design” principle in
order to avoid redundant or superficial algorithmic components.

The framework of Memetic Algorithms constitutes an interesting enrichment to
the arsenal of existing discrete optimization methods and offers a valuable alterna-
tive for tackling hard discrete optimization problems.
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