
Chapter 5
Parametrization and Balancing Local and
Global Search

Dirk Sudholt

5.1 Introduction

This chapter is devoted to the parametrization of memetic algorithms and how to
find a good balance between global and local search. This is one of the most press-
ing questions when designing a hybrid algorithm. The idea of hybridization is to
combine the advantages of different components. But if one components dominates
another one, hybridization may become more hindering than useful and compu-
tational effort may be wasted. For the case of memetic algorithms, if the effect of
local search is too strong, the algorithm may quickly get stuck in local optima of bad
quality. Moreover, the algorithm is likely to rediscover the same local optimum over
and over again. Lastly, an excessive local search quickly leads to a loss of diversity
within the population.

The importance of the parametrization of memetic algorithms has already been
recognized by Hart [366] in 1994. He posed the following questions, many of which
have been reproduced in similar ways in later articles:

• How often should local search be applied?
• On which solutions should local search be used?
• How long should the local search be run?
• How efficient does a local search need to be?

We will mostly deal with the first and the third question in the sequel. In concrete
implementations of memetic algorithms different parameters occur. Related to the
first question is a strategy to call local search with a fixed frequency, the local search
frequency. A similar strategy is to call local search probabilistically, with a fixed lo-
cal search probability. With regard to the third question, often the running time of
one local search is capped to a value called local search depth. Other mechanisms

Dirk Sudholt
School of Computer Science, The University of Birmingham Edgbaston,
Birmingham B15 2TT, UK
e-mail: d.sudholtcs.bham.ac.uk

F. Neri et al. (Eds.): Handbook of Memetic Algorithms, SCI 379, pp. 55–72.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

d.sudholtcs.bham.ac.uk

56 D. Sudholt

can have a comparable effect. [411] restricted the neighborhood used for one itera-
tion of local search to some fixed parameter k. The size of the neighborhood is also
a crucial parameter in variable-neighborhood search algorithms [604]. Paenke, Jin,
and Branke [697] used the lifetime of an individual to balance the effect of global-
and individual-level adaptation in stochastic environments.

This list of mechanisms for balancing global and local search is by far not com-
plete. While some considerations described in this chapter hold for a large variety
of balancing techniques, we will consider the local search frequency and the local
search depth as the most typical mechanisms.

We describe the outline of this chapter. In Section 5.2 we will survey applications
and theoretical studies dealing with the parametrization. The effect of local search
is discussed and aspects are described that have a strong impact on the optimal bal-
ance between global and local search. We also review approaches how to find such
an optimal balance. Section 5.3 deals with the complexity of local search. We will
ask how powerful local search is on its own and in which settings a local optimum
can be found in polynomial time. For many practically important problems we can-
not guarantee that local search always finds a local optimum in polynomial time.
Even stronger, there is strong evidence that no algorithm can perform this task in
polynomial time. Implications for memetic algorithm design are discussed. Finally,
we will present artificial functions in Section 5.4 and running time analyses demon-
strating that the parametrization of memetic algorithms can be extremely hard. This
also strengthens the fact that there is no a priori optimal parametrization that works
well for every problem. The chapter ends with conclusions in Section 5.5.

5.2 Balancing Global and Local Search

5.2.1 Early Works and the Effect of Local Search

The early work by Hart [366] and a subsequent extension to combinatorial opti-
mization by Land [503] lead to many conclusions for the design of memetic al-
gorithms. Hart investigated the impact of the local search frequency for the opti-
mization of common test functions in continuous spaces like the Rastrigin function,
the Griewank function, and modifications thereof. His experimental results suggest
that genetic algorithms (GAs) with large populations are most effective when lo-
cal search is used infrequently. He also claims that a large local search frequency
is needed if the algorithm is not able to identify regions that are likely to contain
global optima. As the introduction of elitism increases the degree of exploitation,
compared to exploration, less local search is needed when using elitism. Hence,
also the type of GA used with local search has a strong impact on performance.
Hart also remarks that the use of local search has restricted many applications to use
small population sizes because of the increased computational effort. This holds in
particular when local search is applied to every individual in the population.

Regarding the selection of individuals for which local search is to be performed,
Hart [366] proposes to decrease the local search frequency for each individual by the

5 Parametrization and Balancing Local and Global Search 57

number of duplicates contained in the population. This works around the problem of
having redundant local searches on the same solutions. He generalizes this approach
towards reducing the local search frequency with respect to the degree of similar-
ity to other solutions in the population. To this end, a distance metric in genotype
space is used. This closely resembles the well-known fitness sharing mechanism for
preserving diversity [547]. Section III.C.3 Land [503] proposes several extensions
and similar approaches. One is to choose a subset of the population such that the
minimum distance between any two selected individuals is maximized. A second
strategy is to ensure that every individual in the population is close to an individ-
ual that is selected for local search. This way, if the population consists of several
clusters, we can hope that all clusters benefit from local search.

Hart [366] also investigated biasing the selection of individuals for local search
towards fitter individuals. However, as argued by Section III.C.3 Land [503], this
reinforces the dominance of the already fit individuals and hence leads to a rapid
loss of diversity. In addition, good solutions are likely to be close to local optima,
hence they will have the least benefit of applying more local search to them. Also,
for solutions that are close to local optima improvements may be hard to find, which
renders the local search less efficient.

Related to the last remark is the question how easy improvements can be achieved
for specific solutions. Section III.C.3 Land [503] introduced the notion of a “local
search potential” as a measure for the expected gain in fitness in relation to the
computational effort. The local search potential can be estimated by performing few
steps of local search, a so-called “local search sniff” and recording both the gain and
the effort throughout the sniffing period. The average gain per unit of effort is then
used as an estimation for its future effectiveness. The drawbacks of this approach
is that these sniffs might use a fair amount of computational effort to yield reliable
estimations. Moreover, there are no guarantees that the progress in early steps of
local search will be an accurate prediction of future progress.

The use of local search is not restricted to evolutionary algorithms. Memetic
approaches have also been used for various other paradigms such as estimation-
of-distribution algorithms [6] or Ant Colony Optimization [215, 514]. The effect
of local search can be quite different in other paradigms. In a recent study Neu-
mann, Sudholt, and Witt [661] argued that the use of local search in ant colony opti-
mization (ACO) can change the behavior of the algorithm drastically. Without local
search, the sampling distribution for new solutions given by artificial pheromones
usually follows the best-so-far solution. This enables the algorithm to follow paths
and ridges in the search space. When introducing local search with a large local
search depth, however, a newly discovered local optimum might be far away from
the “center of gravity” of the sampling distribution. In ACO algorithms using the
best-so-far rule (i. e. always rewarding the current best solution found so far), the
pheromones are then directly adapted towards the new local optimum. Instead of
following the path taken by local search to arrive at this local optimum, the direct
adaptation of pheromones can make the algorithm sample solutions from a totally
different area of the search space. Neumann et al [661] demonstrated for a con-
structed function where this effect may mislead the search and turn a polynomial

58 D. Sudholt

optimization time into an exponential one, with high probability. However, they
also proved for a slightly different function that this behavior can also prevent the
algorithm from getting stuck in a local optima. Local search can then also help to
reduce an exponential optimization time to a polynomial one.

5.2.2 Aspects That Determine the Optimal Balance

The optimal balance between global and local search clearly depends on the opti-
mization problem at hand and the memetic algorithm applied to it. The latter not
only includes the choice of the operators employed and issues of representation, but
also various other parameters of the algorithm such as the population size, selection
pressure, and the mutation rate. Even among the mentioned aspects and for plain
evolutionary algorithms there is strong evidence that the precise choice of param-
eters can have a tremendous effect on performance. Theoretical studies have been
performed, e. g., by Storch [852] and Witt [939] for the choice of the parent pop-
ulation size, Jansen, De Jong, and Wegener [417] for the choice of the offspring
population size, Jansen and Wegener [416] for the choice of the mutation rate, and
Lehre and Yao [511] for the ratio of the selection pressure in ranking selection and
the mutation rate.

We therefore cannot expect to obtain design guidelines that do not depend on all
the mentioned aspects and nevertheless always lead to good results. The existence
of such guidelines is excluded by the well-known no free lunch theorems [401, 940].
These results state that when averaging over a class of problems that is closed un-
der permutation, all algorithms (this includes all parametrizations for one specific
algorithm) have equal average performance. It is, however, also clear that the set-
ting of the no free lunch theorems is much too general to be of any relevance. The
vast majority of functions considered are of no interest for optimization as they
have exponential-size representations [228]. In Section 5.4 we will present much
stronger results for one particular memetic algorithm. The considered functions do
have polynomial-size representations and exhibit superpolynomial or exponential
performance gaps for even small changes of the parametrization. This shows that
for the considered algorithm there is no polynomial relation between optimal and
non-optimal parameter values.

So, the parameters and design aspects of a memetic algorithm should not be
viewed in isolation. The strongest dependency is probably the one between the lo-
cal search depth and the local search frequency. Choosing one parameter value with
disregard to the other one often does not make much sense. For instance, [411] dis-
covered that in applications to the multi-objective permutation flowshop scheduling
problem the optimal number k of neighbors visited in one iteration of local search
was strongly negatively correlated with the local search frequency pLS. The best
performance was obtained when the product k · pLS was within a range of 1 to 10.

Also, the balance of exploration and exploitation is important. In iterated local
search algorithms [533] local search is typically used in every iteration and per-
formed until a local optimum is found. So, local search is used to its utmost extend.

5 Parametrization and Balancing Local and Global Search 59

On the other hand, iterated local search algorithms tend to use strong perturbations,
i. e., large mutations before applying local search. In this setting, a powerful explo-
rative operator balances out a powerful exploitative operator. When the underlying
evolutionary component of a memetic algorithm is more similar to a classical ge-
netic algorithm, that is, if more emphasis is put on exploration by populations and
the use of recombination and mutation, less local search should be used in order not
to disrupt exploration.

The optimal balance between global and local search also depends on design and
implementation issues. In some applications, local search is computationally ex-
pensive. This holds, for example, in the case of large or computationally expensive
neighborhoods like the Lin-Kernighan neighborhood or pivoting rules such as steep-
est descent/ascent, where the whole neighborhood must be searched. Using pivoting
rules such as first improvement or neighborhood reduction techniques can speed up
the local search significantly and thus shift the “optimal” amount of local search.

In several applications it is possible to perform incremental fitness evaluations
during local search. If the fitness can be efficiently updated in cases where only few
components (bits, objects, edges, . . .) are modified in an iteration of local search, lo-
cal search tends to be much faster than the genetic component of the algorithm. One
example is the TSP where the cost of a 2-Exchange operation can be computed by
only looking at the 4 edges involved, see, e. g. [411, 583]. In fact, Jaszkiewicz [419]
reported in a study on a multi-objective TSP problem that local search was able
to perform 300 times more function evaluations per second than a multi-objective
genetic algorithm. Also neighborhood reduction techniques turned out to be very
useful for speeding up local search [583].

On the other hand, [411] argued that for flowshop scheduling recomputing the
fitness after a local change of a schedule cannot be done much faster than computing
the fitness from scratch. This is because even local changes may imply that the
completion times for almost all jobs have to be recalculated. The execution time for
one iteration of local search is thus a very important issue.

When considering multi-objective problems, it is important to maintain diver-
sity in the population. Sindhya, Deb, and Miettinen [815] used a local search that
optimizes an achievement scalarizing function. The local search helps with the con-
vergence to the Pareto front, but it is also likely to create extreme points on the
Pareto front. To this end, the authors used a dynamic schedule for choosing the lo-
cal search probability. The local search probability linearly increases from 0 to the
inverse population size and then drops to 0 again. The number of generations for
one such cycle is proportional to the population size.

Concluding, there are many aspects that determine the optimal balance between
global and local search. Many different parameter settings have been proposed,
some of which are due to dynamic or adaptive schedules. Table 5.1 summarizes
the above-mentioned aspects. In the following, we will describe approaches how
such an optimal balance can be found.

60 D. Sudholt

Table 5.1. Overview on aspects that affect the optimal amount of local search.

less local search more local search

exploration by GA weak exploration strong exploration

mutation strength small mutations large perturbations

pivoting rule steepest ascent/descent first improvement

neighborhood size large neighborhood small neighborhood/reduction techniques

implementation of LS expensive recalculations incremental fitness evaluations

objectives multi-objective problem single-objective problem

5.2.3 How to Find an Optimal Balance

Several approaches have been proposed how to find a good parametrization for
memetic algorithms. There are general approaches for finding good parameter
settings that are not tailored towards memetic algorithms and hence are somewhat
beyond the scope of this chapter. We briefly mention one such approach called se-
quential parameter optimization (SPO) introduced by Bartz-Beielstein, Lasarczyk,
and Preuß [49]. SPO aims at finding the best parametrization by combining classical
and modern statistical techniques. It can be seen as a search heuristic trying to op-
timize the performance of non-deterministic algorithms. SPO iteratively applies the
following three steps. First, an experimental analysis of an algorithm with a given
parametrization is performed. Then, the performance of the algorithm (including
its parametrization) is estimated by means of a stochastic process model. In a third
step, additional parameter settings in the parameter space are determined in a sys-
tematic way. For further details, we refer to Bartz-Beielstein [47], Bartz-Beielstein,
Lasarczyk, and Preuß [49].

Goldberg and Voessner [329] and Sinha, Chen, and Goldberg [818] presented
a system-level theoretical framework for optimizing global-local hybrids. Two dif-
ferent optimization goals are considered: maximizing the probability of reaching a
solution within a given accuracy and minimizing the time needed to do so. The au-
thors considered the impact of the local search depth for a hybrid that uses random
search as a global component. They presented formulas for determining the optimal
local search depth for the mentioned optimization goals. The formulas, however,
are based on some simplifying assumptions and they do require knowledge on the
structure of the problem that is usually not available in practice. The probabilities
of reaching specific basins of attraction in one step of the global searcher have to
be known as well as the average time local search takes to local optimality for each
basin.

Another well-studied approach is to include domain knowledge into the design
of memetic algorithms [583, 923]. This knowledge can be gained by analyzing the
fitness landscape of the problem (instance) at hand. One useful measure for the
ruggedness of a fitness landscape is the correlation length. It is, in turn, based on
the random walk correlation function r(s), also known as autocorrelation. The func-
tion r(s) specifies the correlation between two points of a random walk that are s

5 Parametrization and Balancing Local and Global Search 61

time steps away. The random walk chooses the next point uniformly from a fixed
neighborhood. Different neighborhoods may thus lead to different correlations. If
the correlation is high, the correlation length is large and the fitness landscape is
smooth. If the correlation is low, the correlation length is small and the fitness land-
scape is rugged. It has been observed that large correlation lengths lead to a large
number of iterations until local search finds a local optimum. On the other hand, a
small correlation length often means that local search may quickly get stuck in bad
local optima [583]. Fitness landscape analysis can help to choose the right neigh-
borhood and a suitable parametrization for the local search.

Last but not least, adaptive techniques may help to find a good parametrization.
Memetic algorithms using many different local searchers are known as multimeme
algorithms [658]; each local search operator is called a “meme.” The choice of
memes can be made adaptively or even self-adaptively, see the survey by Ong, Lim,
Zhu, and Wong [683]. Also coevolutionary systems have been developed that coe-
volve a local searcher alongside the evolution of solutions [490, 830].

5.3 Time Complexity of Local Search

In order to fully understand the capabilities of local search, it is indispensable to
know its limitations. In this section we describe theoretical results on the time com-
plexity of local search and discuss implications on memetic algorithm design. We
will look at local search in isolation and ask how long it takes until one call of local
search finds a local optimum. From the perspective of memetic algorithms, we ask
how efficient the local search component is in computing a local optimum from its
basin of attraction. If local search cannot find local optima efficiently, a memetic
algorithm will most likely show poor performance, even if the global component
can locate the basin of attraction of the global optimum efficiently. We will also re-
view a theory of intractability that applies to many important problems and memetic
algorithms used in practice. It can be proven that under certain complexity theory
assumptions and in the worst case local optima cannot be computed in polynomial
time by any means, even for more sophisticated algorithms than local search. It is
not the case that local search is too simple to locate local optima efficiently. Instead,
the mentioned problems are so difficult that computing local optima is hard for any
(arbitrarily sophisticated) search strategy.

The following presentation is based in parts on Michiels, Aarts, and Korst [598],
Chapter 6. Define a local search problem as a combination of a combinatorial op-
timization problem, a neighborhood function mapping a solution to a subset of the
search space, and an indication whether the problem is a maximization or a mini-
mization problem. The goal of a local search problem is to compute a local optimum
with respect to the goal of the optimization. Note that the neighborhood is an inte-
gral part of the problem. Using a different neighborhood function leads to a different
local search problem.

The main question is how many iterations local search will need in order to find a
local optimum. It is helpful to use the following perspective. Define the state graph

62 D. Sudholt

of a problem as a directed graph where the set of vertices corresponds to the search
space. The state graph includes an edge (x,y) if and only if y is a neighbor of x and
y is strictly better than x. A local optimum thus corresponds to a sink, i. e., a vertex
with no outgoing edges. The number of iterations needed to find a local optimum
corresponds to the length of the path from the starting point to a sink. The precise
choice of an outgoing edge is determined by the pivoting rule.

5.3.1 Polynomial and Exponential Times to Local Optimality

In many applications, local search finds an optimum in polynomial time. Assume
the neighborhood is searchable in polynomial time and the number of function val-
ues is polynomially bounded. Then clearly all paths in the state graph only have
polynomial length and local search will finish in polynomial time. Problems with
only a polynomial number of function values include the NP-hard Minimum Graph
Coloring problem if the number of colors used is taken as fitness function and the
NP-hard MAXSAT problem, when one uses the number of satisfied clauses as ob-
jective function. Another NP-hard problem with this property is the graph partition-
ing problem. The fitness corresponds to the number of cut edges, which ranges from
0 to n2/4, n being the number of vertices. Also weighted problems might show this
property, for instance in special cases where the weights are integral, positive, and
polynomially bounded. Land [503], Section III.A.1 gives a formal proof for a class
of weighted graph partitioning problems and a weighted TSP.

Lin-Kernighan-type or variable-depth-type of local searches perform a chained
sequence of local moves and fix solution components (edges, bits, vertices, . . .) that
have been changed until the end of local search. Hence, these local searches also
trivially stop after polynomially many steps (see [859] for an analysis of memetic
algorithms with variable-depth search). The effect is similar as for local searches
with a maximum local search depth; local search stops in polynomial time without
guarantee of having found a local optimum.

When the number of function values is superpolynomial, it might still be that
all paths in the state graph have only polynomial length. But for some problems one
can actually prove that in settings with exponentially many function values exponen-
tially long paths exist. Englert, Röglin, and Vöcking [245] constructed an instance
for the Euclidean TSP where the state graph for the 2-Opt algorithm has exponential
length. Hence, in the worst case—with respect to the choice of the starting point and
the pivoting rule—local search takes exponential time.

Similar results also hold for pseudo-Boolean optimization. Horn, Goldberg, and
Deb [395] presented so-called long path problems which contain a fitness-increasing
path in the state graph under the Hamming neighborhood (two solutions are neigh-
bored if they only differ in exactly one bit). The length of the path is of orderΘ(2n/2)
if n is the number of bits. In addition, for every point x on the path every Hamming
neighbor y of x has strictly lower fitness than x, unless y is itself a point on the path.
In other words, the next successor on the path is the only neighbor with a better
fitness. This property ensures that a local search using the Hamming neighborhood

5 Parametrization and Balancing Local and Global Search 63

cannot leave the path and thus is forced to climb to its very end. This holds regard-
less of the pivoting rule as the pivoting rule cannot make any choices. All points not
belonging to the path give hints to reach the start of the path, hence also on average
over all starting points local search needs exponential time.

Note, however, that flipping 2 bits at a time or using a stochastic neighborhood
such as standard bit mutations suffices to reach the end of the path efficiently by
taking shortcuts. Rudolph [780] proved an upper bound of O(n3) for the expected
optimization time of the simple algorithm (1+1) EA whose mutation operator flips
each bit independently with probability 1/n. He also formally defined a more robust
generalization to long k-paths where at least k bits have to flip in order to take a
shortcut. The parameter k can be chosen such that the length of the path is still
exponential (say, of order 2

√
n) and the probability of taking a shortcut by standard

bit mutations is still exponentially small. This yields an example where also using
larger neighborhoods that can flip up to k− 1 bits at a time need exponential time
for suitable initializations. Also the stochastic neighborhood used by the (1+1) EA
does not avoid exponential expected optimization times for suitable values of k, as
proven by Droste, Jansen, and Wegener [227].

5.3.2 Intractability of Local Search Problems

NP-completeness theory is a well-known and powerful tool to prove that many im-
portant optimization problems are intractable, in a sense that no polynomial-time
algorithm for the problem can exist, assuming P �= NP. There is a similar theory for
local search problems that can be used to characterize local search problems where
under reasonable assumptions no polynomial-time algorithm exists for finding lo-
cal optima. This includes arbitrary algorithms that need not have much in common
with local search algorithms. The foundation for this theory was laid by Johnson,
Papadimitriou, and Yannakakis [429]. We give an informal introduction into this
theory and refer the reader to Yannakakis [948] and Michiels et al [598], Chap-
ter 6 for complete formal definitions. For this subsection we assume that the reader
has basic knowledge on NP-completeness and refer to classical text books for fur-
ther reading [303, 701, 925]. A brief treatment of NP-completeness is also given
in Michiels et al [598], Appendix B.

The complexity class we will focus on is called PLS for “polynomial-time search-
able.” A local search problem Π is in PLS if there exist two polynomial-time algo-
rithms with the following properties. One algorithm can be seen as an initializa-
tion operator. It simply computes some initial solution for Π in polynomial time.
The second polynomial-time algorithm, given a solution s, either computes a better
neighbor of s or reports that s is a local optimum. If a problem is in PLS, this means
that there is a local search algorithm such that the initialization and each iteration of
local search can be executed in polynomial time. This is not to be confused with the
question how many iterations are needed in order to find a local optimum.

Similar to reductions in NP-completeness theory, there is the concept of a reduc-
tion between PLS-problems: we can relate the difficulties of two problems Π1,Π2

64 D. Sudholt

in PLS as follows. Denote a PLS-reduction from Π1 to Π2 by Π1 �PLS Π2. A PLS-
reduction demands a polynomial-time algorithm that maps a problem instance of
Π1 to an instance of Π2 and a polynomial-time algorithm that maps a solution for
Π2 back to a solution for Π1. In the latter mapping, we require that if the solution
s2 for Π2 is a local optimum for Π2 and s2 is mapped to a solution s1 for Π1, then
s1 must be a local optimum for Π1. Hence, if we want to solve Π1, we can use the
first algorithm to transform the instance for problem Π1 into an instance of Π2, then
solve problem Π2 to local optimality, and finally map the local optimum back to a
local optimum for Π1 using the second algorithm.

If Π1 �PLS Π2 then we can conclude that Π2 is “at least as hard” as Π1. This
means that if Π1 cannot be solved in polynomial time, then Π2 cannot be solved in
polynomial time either. But if Π2 is polynomial-time solvable, then Π1 also is. This
concept leads to the notion of PLS-completeness: a problem Π is PLS-complete if
every problem in PLS can be PLS-reduced to it; in other words, Π is PLS-complete
if it is at least as hard as every other problem in PLS. PLS-complete problems thus
constitute the hardest problems in PLS. If it could be shown for one PLS-complete
problem that a local optimum can always be found within polynomial time, then
all problems in PLS would be solvable in polynomial time. Speaking in terms of
complexity classes, we would then have P = PLS. However, as no polynomial-time
algorithm has been found for any PLS-complete problem, it is widely believed that
P �= PLS.

Theorem 5.1. If P �= PLS, there exists no algorithm that always computes a local
optimum for a PLS-complete local search problem in polynomial time.

This result not only states that local search probably cannot find local optima for
PLS-complete problems. It also says that no other, arbitrarily sophisticated algo-
rithm can do better.

The theory of PLS-completeness has concrete implications as many well-known
local search problems have been proven to be PLS-complete. We list some examples
and refer to Michiels et al [598], Appendix C for a more detailed list.

Theorem 5.2. The following local search problems are PLS-complete.

• Pseudo-Boolean optimization: maximize or minimize a function {0,1}n → �

using the Hamming neighborhood
• MAX-2-SAT for the Hamming neighborhood as well as the Kernighan-Lin

neighborhood
• MAXCUT for the Hamming neighborhood as well as the Kernighan-Lin neigh-

borhood
• Metric TSP for the k-Exchange neighborhood as well as (a slightly modified

variant of) the Lin-Kernighan neighborhood.

So, there are PLS-completeness results for neighborhoods used by common lo-
cal search algorithms. Memetic algorithms usually combine different neighbor-
hoods for genetic operators and local searchers. Multimeme algorithms or variable-
neighborhood search even use several neighborhoods for local search. Does PLS-
completeness also hold in these settings?

5 Parametrization and Balancing Local and Global Search 65

The answer is yes. Recall that a PLS-reductionΠ1 �PLS Π2 demands that all local
optima in Π2 must be mapped to local optima in Π1. In order to prove that a problem
Π2 is PLS-complete, it suffices to show that Π1 �PLS Π2 for a PLS-complete local
search problem Π1. Assume that Π1 is PLS-complete and consider the situation
where Π1 and Π2 are based on the same combinatorial problem. Further assume that
Π2 uses a “larger” neighborhood in the following sense: if x and y are neighbored in
Π1 then they are also neighbored in Π2. For example, Π1 might be the TSP with a
2-Exchange neighborhood and Π2 might be the TSP with a neighborhood of all 2-
Exchange and 3-Exchange moves. Now, if x is a local optimum in Π2 then it is also
a local optimum in Π1 (it might even have less neighbors to compete with). Hence,
using the identity function for mapping local optima in Π2 back to Π1 establishes
a PLS-reduction Π1 �PLS Π2 and proves PLS-completeness for Π2. Note that the
term “neighborhood” can be used in a broad sense. In the above example, Π2 might
use different kinds of operators. For instance, instead of containing 2-Exchange and
3-Exchange moves, the neighborhood of Π2 could contain 2-Exchange moves and
Lin-Kernighan moves. Note, however, that the enlarged neighborhood must still be
searchable in polynomial time as otherwise Π2 would not be contained in PLS.

It is also possible to incorporate populations as described by Krasnogor and
Smith [494]. A local search problem Π1 whose state space reflects a single solu-
tion can be mapped to a local search problem Π2 whose state space reflects all
possible populations. The function value for Π2 can be defined as the Π1-value for
the best individual in the population. The neighborhood function for Π2 would con-
tain all possible transitions to other populations using the neighborhood function of
Π1. As long as this neighborhood is searchable in polynomial time, a PLS-reduction
Π1 �PLS Π2 can simply map the best individual from the population of the problem
Π2 to Π1. If the population cannot be improved by any operation in Π2, then the
best individual cannot be improved in Π1. Hence, a locally optimal population for
Π2 implies a locally optimal individual for Π1. With this PLS-reduction, we have
shown that the population-enhanced problem Π2 is PLS-complete as well.

The conclusion from these observations is the following: if we know that a lo-
cal search problem Π1 is PLS-complete, then all algorithms that result from Π1 by
extending the algorithm to populations, enlarging neighborhoods, or adding new
operators are, in turn, PLS-complete. This holds under the condition that all consid-
ered neighborhoods are searchable in polynomial time. Krasnogor and Smith [494]
formalize PLS-completeness results for memetic algorithms on the TSP that use the
2-Opt operator. Quoting from their work, “the addition of a population to the evo-
lutionary heuristic does not improve the worst-case behavior beyond that of local
search.”

For the sake of completeness, we also mention that there is a stronger notion of
PLS-completeness, called tight PLS-completeness. For tightly PLS-complete prob-
lems there can exist paths in the state graph of exponential length. This implies that
local search needs exponential time in the worst case. This holds even regardless
of the pivoting rule. Actually, all problems mentioned in Theorem 5.2 are tightly
PLS-complete. To prove tight PLS-completeness, so called tight PLS-reductions
are needed that additionally preserve the length of paths in the state graph, up to

66 D. Sudholt

polynomial factors. Tight PLS-completeness is, however, not robust with respect to
extensions of the neighborhood as larger neighborhoods might add shortcuts in the
state graph.

How can we deal with PLS-complete problems? Recall that PLS-completeness
only focusses on the worst-case behavior. Even if the worst case is hard, the average-
case performance or the performance when starting with “typical” starting points
generated by the global component might be much better. In fact, problem instances
constructed to reveal exponential-length paths in the state space are mostly contrived
and very dissimilar to problem instances encountered in practice. Furthermore, even
if there is an intractability result for a general problem, it might be that one is ac-
tually solving an easier special case of the general problem. While the TSP us-
ing common neighborhoods is PLS-complete for general edge weights, local search
trivially succeeds in polynomial time if the edge weights are positive and polynomi-
ally bounded integers. Though the general problem is (tightly) PLS-complete, the
weight-restricted TSP is not.

5.4 Functions with Superpolynomial Performance Gaps

From general hardness results that hold for classes of algorithms under certain as-
sumptions, we now move on the more concrete results for specific memetic algo-
rithms. We will present results that prove the non-existence of a priori guidelines
for the parametrization of the investigated memetic algorithms. For both the local
search depth and the local search frequency there are functions where only specific
parameter values can guarantee an effective running time behavior. With only small
variations of the parameters, the typical running time experiences a phase transition
from polynomial to superpolynomial or even exponential running times. The “op-
timal” parameter values for these functions can be chosen almost arbitrarily. This
implies that for almost each fixed parametrization (whose value may depend on the
problem size) there is a function for which this parameter is far from being opti-
mal. This section is based on Sudholt [858]. Preliminary results were published in
Sudholt [855, 856].

The non-existence of an all-purpose optimal parameter value is not surprising
in the light of the no free lunch theorems [401, 940], but our statements are much
stronger. For instance, they prove that the running times of “good” and “bad” pa-
rameter values are not polynomially related. Also, the no free lunch theorems only
yield a mere existence proof and do not give any hints how separating functions
might look like.

The downside of this approach is that these strong statements can only be ob-
tained by fixing a memetic algorithm that is simple enough to be handled analyt-
ically. In particular, the algorithm does not use crossover. The algorithm is called
(μ+λ) EA. It uses a fixed maximum local search depth denoted by δ and calls local
search with a fixed frequency, every τ iterations. The local search used iteratively
searches for neighbors with strictly larger fitness and stops if no such point exists
or the maximum local search depth of δ iterations has been hit. It may be imple-
mented using an arbitrary pivoting rule. The (μ+λ) MA operates with a population

5 Parametrization and Balancing Local and Global Search 67

Algorithm 8. Local search(y)
for δ iterations do1

if there is a z ∈N (y) with f (z) > f (y) then2

y← z;3

else4

stop and return y;5

endif6

endfor7

return y;8

Algorithm 9. (μ+λ) Memetic Algorithm

Let t← 0;1

Initialize P0 with μ individuals chosen uniformly at random;2

repeat3

P′t ← /0;4

for i← 1 to λ do5

Choose x ∈ Pt uniformly at random;6

Create y by flipping each bit in x independently with prob. pm;7

if t mod τ = 0 then8

y← local search(y)9

endif10

P′t ← P′t ∪{y};11

endfor12

Create Pt+1 by selecting the best μ individuals from Pt ∪P′t ; // Break ties13

in favor of P′t
t← t +1;14

until termination ;15

of size μ and creates λ offspring in each generation. This is done by choosing ran-
domly a parent, then mutating it, and, every τ generations, additionally applying
local search to the result of the mutation. The population for the next generation is
selected among the best parents and offspring.

5.4.1 Functions Where the Local Search Depth Is Essential

Now we describe how to construct a function fD parametrized by an “ideal” value
D for the local search depth, such that the following holds. Formal definitions can
be found in Sudholt [858]. If the local search depth is chosen as δ = D, then the
(μ+λ) EA optimizes fD efficiently. However, if the local search depth is only a little
bit away from this ideal value, formally |δ −D|� log3 n, then the (μ+λ) EA needs
superpolynomial time, with high probability. The precise result reads as follows.

Theorem 5.3. Let D � 2log3 n, λ = O(μ), and μ ,δ ,τ ∈ poly(n). Initialize the
(μ+λ) MA with μ copies of the first point on the path, then the following holds
with high probability:

68 D. Sudholt

– if δ = D, the (μ+λ) MA optimizes fD in polynomial time
– if |δ −D|� log3 n, the (μ+λ) MA needs superpolynomial time on fD.

We only remark without giving a formal proof that the function can be adapted such
that in the second case the stronger assumption |δ−D|� nε for some constant ε > 0
leads to exponential optimization times.

In the following, we describe the construction of the function fD and the main
proof ideas. The construction is based on the long k-paths already mentioned in Sec-
tion 5.3. On this path it is very unlikely that mutation can find a shortcut as at least
k = Ω(

√
n) bits would have to flip simultaneously in one mutation. For simplicity,

we assume that the algorithm starts with the whole population at the start of the path
and only mention that the construction can be adapted for random initialization. All
points that are neither on the path nor global optima are assigned a very low fitness,
so that the algorithm only searches on the path. In fact, the mentioned points all
receive the same low fitness value, so that local search stops immediately if called
from a point that is surrounded by low-fitness individuals. In some sense, we have
thus transformed an n-dimensional problem into a one-dimensional problem. The
path points are assigned fitness values in the following way. The basic idea is that
a global optimum can only be found with good probability if local search stops at
specific points on the long k-path.

index

fit
ne

ss

D D
D

Fig. 5.1. Sketch of the function fD. The x-axis shows the index on the long k-path. The y-
axis shows the fitness. The thick solid line shows the fitness of the points on the long k-path.
Encircled path points are close to a target region with respect to Hamming distance. The long
k-path can be separated into n subsequent sections with increasing fitness, each one ending
with a local optimum. For the sake of clarity, only the first three out of n sections are shown.

The path can be divided into sections on which the fitness is strictly increasing
on the path. Each section ends with a local optimum. A sketch of the function is
given in Figure 5.1, reproduced from Sudholt [858]. The absolute fitness values at
the start of these sections is set so low that a section can only be climbed by local
search, given that a preceding mutation creates a suitable starting point. For each
section, a set of global optima is placed close to the path in a way that local search
cannot locate a global optimum when climbing the section. (This is where we have

5 Parametrization and Balancing Local and Global Search 69

to think of an n-dimensional problem again as this cannot be properly drawn in a
one-dimensional picture.) However, if the local search depth is set in such a way that
local search stops close to the global optima, then there is a good chance of jumping
to a global optimum the next time this individual is selected for mutation.

Now, the main ideas of the proof are as follows. If the local search depth is
smaller than D− log3 n, local search typically stops with a search point that is infe-
rior to all points in the population. The new offspring is then immediately rejected
by selection. The only way to avoid this is to make a large jump by mutation that
flips at least log3 n bits simultaneously. The probability for this event is superpoly-
nomially small and the expected waiting time until this happens is superpolynomial.
This establishes a superpolynomial lower bound in the case δ � D− log3 n.

In case the local search depth attains the “ideal” value δ = D, there is a constant
probability that local search stops close to a set of global optima and a mutation
flipping two bits creates a global optimum next time this individual is selected for
mutation. Note that the algorithm only needs to be successful on one section in order
to find a global optimum. With high probability this happens at least once within n
trials and the algorithm succeeds in polynomial time.

If the local search depth is too high, i. e., δ � D+ log3 n, every time local search
climbs a section it runs past the set of global optima and ends with the next local
optimum. This holds since each section has length D+ log3 n. From there, a global
optimum can only be reached by a large mutation or if the population is able to
approach the target set by moving downhill on the section from the local optimum.
Note that a new offspring might survive even if it is worse than its parent in case
the population contains individuals that are still worse than the offspring. However,
using family-tree techniques [938], one can prove that with high probability the
population is quickly taken over by the best individuals in the population before
getting downhill.

5.4.2 Functions Where the Local Search Frequency Is Essential

Also the choice of the local search frequency can have a tremendous impact on the
performance of the (μ+λ) MA. As the analysis presented in Sudholt [858] is quite
involved, the results are limited to the (1+1) MA where μ = λ = 1. Two functions
called Racecon and Raceuncon are defined according to given values for n,δ , and τ .
For formal definitions we again refer to Sudholt [858]. The (1+1) MA is efficient on
Racecon, but inefficient on Raceuncon. Now, if the local search frequency is halved,
the (1+1) MA suddenly becomes inefficient on Racecon, but efficient on Raceuncon.

The functions Racecon and Raceuncon, which we call race functions, are con-
structed in similar ways, so we describe them both at once. First of all, we partition
all bit strings into their left and right halves, which form two subspaces {0,1}n/2

within the original space {0,1}n for even n. Each subspace contains a part of a long
path. Except for special cases, the fitness is the (weighted) sum of the positions
on the two paths. This way, climbing either path is rewarded and the (1+1) MA is
encouraged to climb both paths in parallel.

70 D. Sudholt

The difference between the two paths in the left and right halves of the bit string is
that they are adapted to the two neighborhoods used by mutation and local search,
respectively. In the left half, we have a connected path of predefined length. The
right half contains a path where only every third point of the long k-path is present.
Instead of a connected path, we have a sequence of isolated peaks where the closest
peaks have Hamming distance 3. As the peaks form a path of peaks, we speak of an
unconnected path. While the unconnected path cannot be climbed by local search,
mutation can jump from peak to peak as a mutation of 3 specific bits has probability
at least 1/(en3). Concluding, local search is well suited to climb the connected path
while mutation is well suited to climb the unconnected path.

Now, the main idea is as follows. Choosing appropriate lengths for the two paths,
if the local search frequency is high, we expect the (1+1) MA to optimize the con-
nected path prior to the unconnected path. Contrarily, if the local search frequency is
low, the (1+1) MA is likely to optimize the unconnected path prior to the connected
one. Which path is optimized first can make a large performance difference. In the
special cases where the end of any path is reached, we define separate fitness values
for Racecon and Raceuncon. For Racecon, if the connected path is optimized first (i. e.,
wins the race), a global optimum is found. However, if the unconnected path wins
the race, Racecon turns into a so-called deceptive function that gives hints to move
away from all global optima and to get stuck in a local optimum. In this situation,
the expected time to reach a global optimum is exponential, i. e., 2Ω(nε) for some
constant ε > 0. For Raceuncon, the (1+1) MA gets trapped in the same way if the
connected path wins and a global optimum is found in case the unconnected path
wins.

The precise result is as follows. The preconditions δ � 36, δ/τ � 2/n, and
τ = O(n3) require that “enough” iterations of local search are performed during
a polynomial number of generations. The reason is that local search must be a vis-
ible component in the algorithm for the different local search frequencies to take
effect. The condition τ = nΩ(1) as well as the choice of the initial search point are
required for technical reasons.

Theorem 5.4. Let δ = poly(n), δ � 36, δ/τ � 2/n, τ = nΩ(1), and τ = O(n3). If
the (1+1) MA starts with a search point whose positions on the connected and un-
connected paths are 0 and n5, respectively, then with overwhelming probability

– the (1+1) MA with local search frequency 1/τ optimizes Racecon in polynomial
time while the (1+1) MA with local search frequency 1/(2τ) needs exponential
time on Racecon and

– the (1+1) MA with local search frequency 1/τ needs exponential time on
Raceuncon while the (1+1) MA with local search frequency 1/(2τ) optimizes
Raceuncon in polynomial time.

The proof is quite technical; it requires good estimations for the progress made on
the connected and the unconnected path, respectively. This is done separately for
generations with and without local search, respectively. Using appropriate values
for the lengths of the two paths derived from the analysis, one can show the fol-
lowing with overwhelming probability. With local search frequency 1/τ , within n4

5 Parametrization and Balancing Local and Global Search 71

generations on both race functions the end of the connected path is reached first. On
Racecon the (1+1) MA has then found an optimum, while it has become trapped on
Raceuncon. With local search frequency 1/(2τ), within

√
2n4 generations the total

progress by local search on the connected path is decreased by a factor of roughly
1/
√

2, compared to the previous setting. At the same time, the total progress on the
unconnected path by mutation is increased by a factor of roughly

√
2. Summing up

the progress values yields that then with overwhelming probability the (1+1) MA
has found the end of the unconnected path first and Raceuncon is optimized, while
the (1+1) MA is trapped on Racecon.

An interesting insight gained from the analysis is that just one iteration of local
search helps significantly with the location of isolated peaks. Mutation has to flip
three specific bits in order to reach the next point on the unconnected path. However,
if local search is called after mutation and were it only for one iteration, the next
point on the unconnected path is also reached if only two out of the mentioned three
bits are flipped. The probability for a successful step is hence roughly a factor of 3n
larger! So, in contrast to our intuition, local search does indeed help to optimize the
unconnected path. Fortunately for our proof, the steps made on the unconnected path
in generations with local search are unbiased. Creating the next successor on the
unconnected path by mutation and local search has the same probability as creating
the closest predecessor on the path. Both operations will be accepted with high
probability if δ � 6 since at least δ −1 iterations of local search are spent to make
progress on the connected path. Also recall that the connected path is weighted with
a factor of n in the fitness function. Hence, the progress made on the connected
path will dominate the effect of movements on the unconnected path. The search
on the unconnected path in generations with local search is hence unbiased and
the probability of making large progress due to the random walk behavior can be
bounded. However, this only holds under the condition that τ = nΩ(1), i. e., if the
local search frequency is not too high. Otherwise, the variance of the random walk
behavior will indeed have a significant effect on the progress on the unconnected
path. The author conjectures that with a very high local search frequency, the effect
might even be reversed such that the unconnected path has a larger benefit from
local search than the connected path.

5.5 Conclusions

Finding a good balance between global and local search is a crucial step in the de-
sign of memetic algorithms. This topic has been addressed explicitly or implicitly
in a variety of applications as well as in empirical and theoretical works. An impor-
tant conclusion is that the optimal balance is determined by many aspects. Finding
a good balance involves knowledge on the problem structure as well as a careful
consideration of the algorithms’ operators, local search neighborhoods, settings of
other parameters like the mutation strength, and implementation issues.

The chapter also covered theoretical approaches that are important to memetic al-
gorithm researchers as they show the limits on the efficiency of memetic algorithms.

72 D. Sudholt

The time complexity of local search is an interesting and rich topic in its own right
and it can help to understand the effect of local search in memetic settings. PLS-
completeness results indicate that for many practical problems there probably is no
algorithm that can always find a local optimum in polynomial time. These intractabil-
ity results can help prevent researchers from trying to achieve the impossible. Fi-
nally, running time analyses for a particular memetic algorithm have demonstrated
superpolynomialor exponential performance gaps even for only slight changes of the
parametrization. This rules out a priori design guidelines with polynomially related
optimization times, for the considered memetic algorithm. All these findings indicate
that finding a good parametrization remains an interesting and challenging topic for
the years to come.

	Parametrization and Balancing Local and Global Search
	Introduction
	Balancing Global and Local Search
	Early Works and the Effect of Local Search
	Aspects That Determine the Optimal Balance
	How to Find an Optimal Balance

	Time Complexity of Local Search
	Polynomial and Exponential Times to Local Optimality
	Intractability of Local Search Problems

	Functions with Superpolynomial Performance Gaps
	Functions Where the Local Search Depth Is Essential
	Functions Where the Local Search Frequency Is Essential

	Conclusions

