
Chapter 3

Modeling and Analysis Tools

Modeling and analyzing problems from semiconductor manufacturing always
require a solid knowledge of appropriate decision methods. Models are used
within the production planning and control process for representing the BS
and BP and for decision-making. Decision methods usually come from the
areas of operations research (OR), artificial intelligence (AI), and computer
science (CS). They are important prerequisites to solving decision problems.

In this chapter, we begin with a brief discussion of general systems and
models. We will then describe several types of models that are used in the re-
mainder of this monograph. Models are important to identify appropriate de-
cision methods. We will discuss very briefly linear programming and mixed in-
teger programming (MIP), stochastic programming, branch-and-bound tech-
niques, dynamic programming, metaheuristics, queueing theory, and discrete-
event simulation. The main ingredients of discrete-event simulation models
of wafer fabs are presented in some detail.

After the development of a decision method, the question is raised of how
good is the method in various situations. Therefore, we also deal with ba-
sic questions of performance assessment. We start by introducing important
performance measures used in the remaining chapters of this monograph.
A simulation-based method to assess the performance of a production plan-
ning and control system within a dynamic and stochastic environment is
described. The content of this chapter cannot compensate for a deeper study
of more specialized textbooks in OR, AI, and CS. However, in order to be
as self-contained as possible, we summarize the main ideas of modeling and
decision-making in this chapter.

3.1 Systems and Models

In this section, we describe how systems can be represented by models.
Furthermore, we discuss different types of models.

L. Mönch et al., Production Planning and Control for Semiconductor Wafer
Fabrication Facilities, Operations Research/Computer Science Interfaces
Series 52, DOI 10.1007/978-1-4614-4472-5 3,
© Springer Science+Business Media New York 2013

29

30 3 Modeling and Analysis Tools

3.1.1 Representation of Systems by Models

In Chap. 2, we discussed which systems and processes are related to
semiconductor manufacturing. In this section, we generalize the notion
of systems slightly in order to introduce the notion of models.

A system S is given by a set of components V . The components and their
associations provide the structure of S. The behavior of a system is described
by the interaction of the system components. An interaction is given by an
information exchange or an exchange of material or energy. We call S open
when it interacts with its environment. When such an interaction does not
occur, the system is a closed one. An input–output system is a system that
totally hides the inside view on the system components. Input–output systems
are also called black-box systems (cf. Mesarović and Takahara [181]).

A real system is a certain part of the real world. The components of real
systems are physical. The BS of a wafer fab described in Chap. 2 is an example
of a real system. Often, we are interested only in certain aspects of a real
system, and then it makes sense to work with a representation of the original
system. These representations are called models.

Now, we will continue with a more abstract view of models. A model is
defined formally as a triplet

M := (SO,SM, f), (3.1)

where we denote the original system by SO and the model system by SM. The
set of system components of SO is denoted by VO. The notation VM is used
for the system components of SM. The function

f : VO →VM (3.2)

is called the model mapping. We are interested in models that have a high
fidelity related to structure and behavior. Very often, it is not possible and
even not necessary to describe f explicitly. The described situation is shown
in Fig. 3.1.

There are goals that have to be achieved when creating a model. These
goals are used to identify the parts of the real world that have to be modeled
and interpreted in an appropriate way. The level of detail in modeling is de-
termined by the goals. Usually, a set of model parameters have to be selected
to describe the components of a model and their interactions. In doing so, it
is important to remember the famous words of George Box, “All models are
wrong, some are useful.” [31].

In case of a wafer fab, the type and number of machines, their characteris-
tics, the structure of the process flows, and the job release rate are parameters
of a model of the wafer fab.

3.1 Systems and Models 31

original system

system components

system components

model system

model mapping f : VO

VO

SO

→

VM

VM

SM

Figure 3.1: Relationship between original and model

3.1.2 Types of Models

There are different kinds of models (cf. Turban et al. [299]). Descriptive mo-
dels are used to depict the components of a system and their relationships.
They describe how a system behaves, but they do not explain the behavior
of a system or allow for prognoses of real activities.

Prescriptive models select one or more actions among a set of alternatives.
This decision is based on specified criteria. Optimization models are a typical
representation of prescriptive models. In the case of these models, optimality
criteria are used to select the best alternative. An optimization model con-
sists of objective functions to be optimized and constraints that have to be
satisfied. A solution of an optimization model is called feasible if it satisfies
all constraints.

We also differentiate between static and dynamic models. Static models
are related to a certain snapshot in time of a specific situation. Dynamic
models are time-dependent. They represent scenarios that change over time.
Dynamic models have the advantage that they represent the development of
the system over time.

Furthermore, in the rest of this monograph, we develop deterministic and
stochastic models. All model parameters are assumed to be known with
certainty in a deterministic model. In contrast, a stochastic model contains
certain model parameters that are described by probability distributions.

32 3 Modeling and Analysis Tools

Because of the efforts to build a model and to maintain it, the simplest
model that answers the question is the best. While it is generally true that
prescriptive, dynamic, and stochastic models are more complicated than de-
scriptive, static, and deterministic models, we prefer models with the latter
characteristics if they are sufficient to answer the given questions. For exam-
ple, a descriptive, static, and deterministic model implemented in a spread-
sheet is often good enough for rough cut capacity planning.

In the next section, we discuss various decision methods that can be used in
prescriptive models to select actions among alternatives. We also will describe
simulation models as a main ingredient for simulation-based decision-making.

3.2 Decision Methods and Descriptive Models

In this section, we discuss various optimal and heuristic approaches that will
be applied in the remaining chapters of this monograph to make decisions.
Furthermore, we present some descriptive models that are useful.

3.2.1 Optimal Approaches vs. Heuristics

A decision problem consists of a set of feasible actions or sequences of actions
where we have to select a particular action or sequence of actions that achieves
certain objectives in the best possible way according to specified criteria.
We call an action or a sequence of actions feasible when it fulfills all the
requirements. The formal representation of a decision problem is called a
decision model or an optimization model. In its simplest form, a decision
model contains a set of alternative feasible actions and an objective function
to assess them.

The notion of decision methods is closely related to decision models. De-
cision methods can be used to determine feasible or even optimal solutions
for a certain decision problem. We introduce several decision methods in the
remainder of this section in a rather generic way. Various concrete decision
problems related to semiconductor manufacturing will be discussed in the
remaining chapters of this monograph.

We are interested to find efficient algorithms to solve our decision problems
(cf. Kleinberg and Tardos [144]). We denote by G(n) an upper bound of the
running time of an algorithm, where we denote by n the size of the input of
the algorithm. The function G(n) grows on the order O(g(n)) if

lim
n→∞

G(n)
g(n)

= c (3.3)

holds, where c is a positive constant and g(n) is a given function. We are
interested in determining O(nk) algorithms, where k is a fixed non-negative
number. Algorithms of this class are called polynomial-time algorithms. If we
cannot find a polynomial-time algorithm, then it is useful to check whether

3.2 Decision Methods and Descriptive Models 33

it can be proved that the problem is NP-hard or not. Roughly speaking, NP-
hardness means that it is unlikely that an efficient algorithm exists that will be
guaranteed to solve the problem to optimality. Very often, this can be done by
showing that special cases of the problem can be transformed with polynomial
effort into a known NP-hard problem (see Garey and Johnson [94]).

We differentiate between optimal decision methods and heuristics. Heuris-
tics are used to determine good solutions for NP-hard problems, but do
not necessarily provide optimal solutions. Heuristics are approximation algo-
rithms that are used to solve NP-hard problems. The majority of the decision
problems discussed in this monograph are NP-hard. Therefore, we mainly fo-
cus on efficient heuristics. However, it is generally useful to know optimal
decision methods, because we can exploit them to assess the performance
of heuristics for small-size problem instances. On the other hand, often very
efficient heuristics can be derived from combining optimal decision methods
with heuristics.

In the remainder of this section, we discuss several optimal decision meth-
ods and heuristic algorithms that will later be used to tackle production
planning and control problems in semiconductor manufacturing.

3.2.2 Branch-and-Bound Algorithms

A branch-and-bound algorithm is an enumerative procedure for solving dis-
crete optimization problems optimally (see Brucker and Knust [35]). Let us
consider for the sake of simplicity the following maximization problem, which
can serve as a model problem.

(P) Find a feasible solution s∗ ∈ S with

f (s) ≤ f (s∗) (3.4)

for all s ∈ S, where we denote by S a finite set of feasible solutions and f is a
real-valued objective function. Note that we can focus on maximization prob-
lems without loss of generality because we can tackle minimization problems
by the same approach by simply maximizing − f .

The notion of subproblems is important for branch-and-bound schemes.
A subproblem is a subset S′ ⊆ S. We explain the three main ingredients of a
branch-and-bound scheme as follows:

• Branching: The problem S is replaced by a set of subproblems Si ⊆ S,
i = 1, . . . ,r with the property

⋃
Si = S. This decomposition process of sub-

problems is called branching. The branching procedure is recursive, i.e.,
each subset S′ can be decomposed in a similar way. We obtain a bran-
ching tree with root S and children Si. An example for a branching tree is
depicted in Fig. 3.2.

• Upper bounding: An upper bounding scheme is responsible for calculating
an upper bound UB(S′) for the objective function value of a subproblem S′.

34 3 Modeling and Analysis Tools

• Lower bounding: The objective function value of an arbitrary feasible so-
lution s ∈ S provides a lower bound L for problem (P). When for a subset
S′ the relation UB(S′) ≤ L holds, then S′ cannot provide a better solution
for problem (P). Therefore, we do not need to continue the branching pro-
cess from the corresponding node of the branching tree. The value of L
has to be as large as possible to avoid a large number of branching steps.
After some branching steps, we may reach a situation where a subproblem
S′′ contains only one feasible solution s. We obtain UB(S′′) = f (s). When
UB(S′′)> L is valid, we replace L by UB(S′′).

S

S2S1

S11 S12 S21 S22

Figure 3.2: Branching tree

Branch-and-bound algorithms are important to solve small-size discrete
optimization problems optimally. These known optimum values can be used
to assess the performance of heuristics. When the branching tree is truncated,
we obtain beam search heuristics (cf. Pinedo [240]). The truncation of the
branching tree helps to reduce the computational effort.

3.2.3 Mixed Integer Programming

We introduce MIP formulations as a generalization of linear programming
approaches [25, 214, 243]. A linear MIP model is an optimization model with
a linear objective function that contains real- and integer-valued decision
variables and linear constraints.

Each MIP model can be written in the following form:

Z(X) := min
(x,y)

{cx+ f y|(x,y) ∈ X} , (3.5)

where we denote by X the set of feasible solutions. The set of feasible solu-
tions is described by m linear constraints, by nonnegativity constraints for

3.2 Decision Methods and Descriptive Models 35

x,y, and by integer constraints for the decision variables y. Using a matrix
representation, we can write the set X in the following form:

X :=
{
(x,y) ∈ IRn

+×ZZp
+|Ax+By ≥ b

}
, (3.6)

where

• Z(X) is the optimal objective function value that is obtained by optimizing
cx+ f y over X .

• x denotes an n dimensional column vector that contains non-negative real-
valued entries xi, i = 1, . . . ,n. y is a p-dimensional column vector containing
integer-valued components yi,1 = 1, . . . , p.

• c ∈ IRn and f ∈ IRp are row vectors that are given by the coefficients of the
objective function (3.5).

• b ∈ IRm is the column vector of the right-hand side of the m constraints.
• A and B are IRm×n and IRm×p matrices, respectively.

Note that mixed binary optimization models are fairly common. In this case,
yi ∈ {0,1}, i = 1, . . . , p is valid. When B = 0 and f = 0 is true, then we have
a linear optimization model that can be solved efficiently by the simplex
algorithm (see Bertsimas and Tsitsiklis [25]). In the case of MIP models,
branch-and-bound techniques (cf. Sect. 3.2.2) will often be applied. The main
idea of these techniques for tackling MIPs consists of solving a set of linear
optimization problems instead of the MIP model. When A = 0 and c = 0
are valid, we call the resulting model an integer programming (IP) model.
Common software packages to solve MIPs are sophisticated and complex.
The software uses a subroutine that solves linear optimization problems in
the discussed branch-and-bound algorithms.

We will see in the remainder of this monograph that MIP formulations will
usually be used to solve small-size problem instances for scheduling problems
optimally (see Nemhauser and Wolsey [214]), whereas linear programming
(LP) formulations usually can be applied for planning problems where the
required level of detail is not as great.

3.2.4 Stochastic Programming

So far, we have assumed that c, f , A, B, and b in Eqs. (3.5) and (3.6) are
deterministic. This assumption is often not realistic in real-world applications.
In order to deal with these situations, we introduce stochastic programming
as a generalization of linear and MIP (cf. Birge and Louveaux [27]). We
assume that the decision model makes some decision in a first stage. Then
some random events occur that affect the outcome of the first-stage decision.
A recourse decision can be made in a second stage to compensate for any
undesirable effects that might have been experienced as a result of the first-
stage decision.

In the following, we assume for the sake of simplicity that we consider
for now only linear programs, i.e., B = 0 and f = 0 in Eqs. (3.5) and (3.6),

36 3 Modeling and Analysis Tools

respectively. We have to make first-stage decisions without full information
on some random events. Later, full information is received on the realization
of some random vector.

A two-stage stochastic linear program with fixed recourse can be written
in the form

Z(X) := min
x

{cx+Q(x)|x ∈ X} , (3.7)

where the set of feasible solutions is denoted by X . The set of feasible solutions
is determined by m linear constraints and by nonnegativity constraints for the
decision variables x. Using a matrix representation, we can write the set X in
the following form:

X :=
{

x ∈ IRn
+|Ax = b

}
, (3.8)

where

• Z(X) is the optimal objective function value that is obtained by optimizing
the expression cx+Q(x) over X .

• x denotes an n dimensional column vector that contains non-negative real-
valued entries xi, i = 1, . . . ,n.

• c∈ IRn is a row vector that is given by the coefficients of the first term in the
objective function (3.7). The function Q(x) is the expected second-stage
value function and will be discussed later in more detail.

• b ∈ IRm is the column vector of the right-hand side of the m constraints.
• A is an IRm×n matrix.

The expected second-stage value function Q(x) is the mathematical expec-
tation of the second-stage value function with respect to the random vec-
tor ξ , i.e.,

Q(x) := Eξ Q̃(x,ξ (ω)), (3.9)

where the second-stage objective function, also called the recourse function,
is defined as follows:

Q̃(x,ξ (ω)) := min
y

{q(ω)y|y ∈ Y} . (3.10)

Q̃(x,ξ (ω)) is the objective function value of a second linear program with the
set of feasible solutions

Y :=
{

y ∈ IRp
+|Wy = h(ω)−T(ω)x

}
. (3.11)

The quantity ω is a realization of a random variable on a probability space
Ω . For a given ω , the quantities q(ω), h(ω), and T (ω) are known, where
q(ω)∈ IRp is a row vector that corresponds to the coefficients in the objective
function (3.10), h(ω)∈ IRs is a column vector that is the part of the right-hand
side of the s constraints that do not depend on the first-stage decision variable
x, and finally T (ω) ∈ IRs×n is the so-called technology matrix. T (ω)x ∈ IRs is
the part of the right-hand side of the s constraints of the set of constraints

3.2 Decision Methods and Descriptive Models 37

(3.11) that depends on the first-stage decision x. Finally, W ∈ IRs×p is called
the recourse matrix. Putting together all the stochastic components of the
second-stage data, we obtain the random row vector

ξ (ω) :=
(
q(ω),h(ω)T ,T1(ω)T , . . . ,Tn(ω)T) ∈ IRp+s+ns, (3.12)

used in expression (3.9). We denote by Ti(ω), i = 1, . . . ,n the ith column of the
matrix T (ω). Note that the second-stage decisions y typically are different
for different realizations ω .

The representation (3.7)–(3.11) demonstrates the flow of decision-making
in a two-stage stochastic program. It starts with taking first-stage decisions
x in the presence of uncertainty about future realizations of ξ . Then, in a
second stage, the current values of the components of the realization of ξ are
known, and the recourse decision y can be made. The first-stage decisions
are made in such a way that their future effects are taken into account by
considering the recourse function Q(x) that is the expected value of taking
decision x. Note also that stochastic MIPs are useful in some situations (see
Birge and Louveaux [27] for details on such optimization problems).

The following situation is important in real-world applications. We assume
that there are K possible scenarios. We consider the different scenarios as
realizations ω . Therefore, we have simply ω = 1, . . . ,K. The probability of
scenario ω is denoted by p(ω). In this case, we can calculate the second-
stage value function Q(x) easily. We obtain

Q(x) :=
K

∑
ω=1

p(ω)

(
p

∑
i=1

q(ω)iyωi

)

=
K

∑
ω=1

p

∑
i=1

p(ω)q(ω)iyωi, (3.13)

where we denote by yω a solution of the second-stage linear program for sce-
nario ω , i.e., we calculate the expected value of the recourse function over all
scenarios. As a result, we obtain a large linear program with a specific struc-
ture that can be solved efficiently by decomposition approaches (cf. Bertsimas
and Tsitsiklis [25] for more details on such methods).

3.2.5 Dynamic Programming

Dynamic programming is another general technique to find the optimal solu-
tion of some optimization problems [35, 144]. It can be applied when the opti-
mal solution can be determined recursively from optimal solutions of smaller
subproblems. This leads to recursive formulations where the recursions are or-
ganized into stages. A dynamic programming approach generally starts with
the smallest subproblems. In contrast to pure recursive algorithms, interme-
diate results are stored in order to avoid a repeated calculation of them.

Dynamic programming formulations are useful to obtain optimal solu-
tions for scheduling problems, especially for single machine scheduling prob-
lems. We will see some of these applications in Chap. 5. Because of the large

38 3 Modeling and Analysis Tools

computational effort and storage requirements of many optimal dynamic pro-
gramming approaches, dynamic programming is often used within decompo-
sition approaches. Based on some insights into the problem structure, the
entire problem is decomposed into subproblems. Dynamic programming can
be used to solve some of the subproblems.

We consider an example to illustrate this feature. A single machine
batch scheduling problem in semiconductor manufacturing consists of form-
ing batches and sequencing them. The problem can be decomposed into the
subproblem of sequencing the jobs and then forming batches based on the
sequence of the jobs. Dynamic programming can be used to solve the batch-
ing subproblem based on the fixed job sequence. This problem is much easier
than simultaneously sequencing and batching the jobs.

Dynamic programming formulations are also often used in stochastic de-
cision processes, especially for Markov decision processes (see Pinedo [240]).

3.2.6 Neighborhood Search Techniques and Genetic
Algorithms

Next, we consider different neighborhood search techniques and genetic al-
gorithms (GA) as examples for modern metaheuristics. A metaheuristic is a
set of generic, i.e., not problem-specific, principles and schemes used to con-
struct heuristics. Neighborhood search techniques operate on a single solution
of problem (P) defined in Sect. 3.2.2 and transfer it into a new solution, while
GAs maintain a population of solutions.

We start by introducing the notion of neighborhood structures. The
mapping

N : S → 2S (3.14)

is called a neighborhood structure, where we denote by 2S the set of all subsets
of S.

We introduce the notion of moves. A transformation that changes a solu-
tion s of (P) into a solution s′ is called a move. The definition of a neighbor-
hood is based on this notion of a move. We call a solution s′ of problem (P)
a neighbor of a solution s when s′ can be obtained from s by a single move.
The set of all neighbors of a given solution s forms the neighborhood of s.
The following notation for the neighborhood will be used:

N(s) := {s′|s′ neighbor of s}. (3.15)

The solution s is called the center point of the neighborhood N(s). The cardi-
nality of the set of neighbors of s is denoted by |N(s)|. Note that this definition
of a neighborhood is clearly covered by the notion of a neighborhood struc-
ture. We can enumerate the set of neighbors by

N(s) :=
{

n1(s), . . . ,n|N(s)|(s)
}
. (3.16)

3.2 Decision Methods and Descriptive Models 39

A single move

μ(s,n(s)) ∈ Nμ(s) (3.17)

can be assigned to each neighbor n(s) where we denote by Nμ(s) the set of
possible moves. It is obvious that a neighborhood can be described by the set
of moves as follows:

Nμ(s) :=
{

μ1 := μ(s,n1(s)), . . . ,μ|N(s)| := μ(s,n|N(s)|(s))
}
, (3.18)

because we consider discrete optimization problems. Often, swapping and in-
sertion moves are used to define neighborhoods. A swapping move exchanges
two different solution elements, for example, the position of two jobs in a
sequence. An insertion move removes a solution element and places it some-
where else in the solution. For example, we can remove a job from the second
position in a sequence and insert it after the job that is in the fourth position.

The simplest way to design a local search algorithm is a steepest ascent-
type iterative improvement algorithm for maximization problems. We start
from an initial solution s ∈ S. As long as solutions s′ ∈ N(s) with f (s) < f (s′)
exist, choose the best solution s′ ∈ N(s), set s := s′, and repeat this step.
This algorithm terminates with some solution s∗. Generally, s∗ is only a local
maximum with respect to N(s) because we accept only improvements of the
incumbent solution.

There are different possibilities to avoid this drawback. One possibility is to
restart the iterative improvement algorithm with different initial solutions. A
second possibility is to explicitly take deteriorations of the objective function
value into account during the iterations. When such non-improvement solu-
tions are accepted as the incumbent solution, then it is possible to visit the
same solution several times during the search process. Therefore, our neigh-
borhood search methods may have a cyclic behavior. Consequently, cycling
avoidance strategies have to be incorporated.

We discuss simulated annealing (SA) proposed by Kirkpatrick et al. [142]
as a neighborhood search strategy for problem (P) that avoids cycling by
selecting the current solution s′ in a randomized manner. It accepts this
random solution s′ in iteration i only with probability

P(s′|s) =
{

exp
(
− f (s)− f (s′)

ti

)
, if f (s)− f (s′)> 0

1, otherwise
. (3.19)

The numbers ti are positive with limi→∞ ti = 0. Often, the ti are of the form
ti+1 := qti, where 0 < q < 1 is valid. When f (s)− f (s′) ≤ 0, then the move
will be accepted. Because of the decreasing ti, the probability to accept a
non-improving move will be decreasing. Therefore, in later iterations, the
acceptance rate for non-improvement steps will be rather small. This leads
to a certain chance to get stuck in a local optimum, but the probability for
this is rather small. A cycling of the solutions during the search can also be

40 3 Modeling and Analysis Tools

avoided by the introduction of a tabu list. A tabu list contains in its simplest
form solutions that have already been visited recently during the search.
New neighbors are only accepted as an incumbent solution when they are
not included in the tabu list. This type of algorithm is called a tabu search
method. Usually, a solution is characterized by certain attributes that can
be stored in the tabu list instead of the full representation of the solution.
Typically, it is not possible to store all the visited solutions due to memory
restrictions and performance issues. Therefore, we consider a list that stores
only the last l visited solutions. When l is chosen big enough, then there is
only a small probability of cycling. There are various tabu search variants.
For a more detailed description of tabu search, the reader is referred to Glover
and Laguna [102].

Variable neighborhood search (VNS) is a local-search-based metaheuristic
(cf. Hansen and Mladenović [115, 188]). The main idea is to enrich a sim-
ple local-search method in order to enable it to escape local optima. This is
done by restarting the local search from a randomly chosen neighbor of the
incumbent solution. This restarting step is called shaking. It is performed us-
ing different neighborhood structures of increasing size. There are a couple of
different VNS variants. In the following, we will briefly discuss basic VNS. For
the remaining variants, we refer the reader to Hansen and Mladenović [115].

Therefore, we consider a set of neighborhood structures Nk,k = 1, . . . ,kmax

and an initial solution s ∈ S. We choose randomly a solution s′ from Nk(s).
Initially, we use k = 1. Based on s′ as an initial solution, we receive a local
optimum s′′ by local search. When

f (s′′)> f (s) (3.20)

is true, then we move there, i.e., we set s := s′′ and repeat the entire process
starting from N1. When there is no improvement obtained by s′′ compared
to the incumbent solution s, then we consider the next neighborhood Nk+1(s)
and repeat the shaking and the local-search step until a certain stopping
criterion is meet.

VNS has the advantage that, compared to many other metaheuristics, the
number of parameters to be selected is small. We only have to find a set of
neighborhood structures and apply them in an appropriate sequence.

A GA maintains a set of feasible solutions called the population. GAs are
motivated by principles of evolution and survival of the fittest [103, 183].
Variation operators, i.e crossover and mutation, and selection operators are
used to modify the elements of the population. GAs are often appropriate
for optimization problems that have the property that a combination of good
partial solutions frequently leads to a good solution with respect to the ob-
jective function. A solution s is typically encoded into a sequence of symbols
called a chromosome. The encoding scheme is called a representation. Each
chromosome has to be evaluated by a fitness function f . The fitness function

3.2 Decision Methods and Descriptive Models 41

is often based on the objective function for the optimization problem to be
solved. It is well known that the performance of a GA depends strongly on
the encoding scheme used (see Rothlauf [270]).

We start from an initial population of chromosomes. Each chromosome is
evaluated using a problem-specific fitness function. Next, parents are selected
based on their fitness. Offspring, called child chromosomes, are created from
a set of parent chromosomes applying crossover operators to the parents.
Crossover operators usually combine certain parts of the sequences that form
the two parent chromosomes into a new child. Mutation operators are used
to disorder the child chromosome with a certain probability. The child chro-
mosomes are added to the original population. Based on the fitness that is
associated with each chromosome, some chromosomes are removed based on
selection operators to make sure that the size of the population is the same
over all generations. The entire cycle of evaluation of the parents, offspring
generation, and selection of the new population is called a generation.

We will see in Chap. 5 that GAs are useful to solve scheduling problems
for single and parallel machines. But they can also be applied to solve plan-
ning problems for semiconductor supply networks or to find an appropriate
mix of dispatching rules to control wafer fabs as shown in Chaps. 7 and 4,
respectively.

Except for the description of stochastic programming methods in
Sect. 3.2.4, so far only decision methods for deterministic problems are
studied. Next, we introduce two additional methods that are related to
decision-making for stochastic problems, i.e., queueing theory and discrete-
event simulation.

3.2.7 Queueing Theory

The first method related to decision-making for stochastic problems is queue-
ing theory. A simple queueing system can be characterized as an input–output
system consisting of a waiting line, also called a queue, and a single server.
However, there are also queueing systems that are formed by service centers
and interconnecting queues. A service center consists of a number of servers
working in parallel. Customers from a calling population arrive from time to
time and join the queue. In some cases, the number of customers that can be
waiting in the queue or in the system is limited by the capacity of the system.
The customers in queue are eventually served, and after service, they leave
the system. A simple queueing system is shown in Fig. 3.3.

In manufacturing, the customers of the queueing system generally corre-
spond to jobs, and the servers are the machines. Often, the number of job
arrivals to and departures from the system are of interest. Based on this
information, the time that a job spends on average within the manufactur-
ing system can be estimated. This quantity is called the cycle time (CT).
Furthermore, the number of jobs within the manufacturing system that are
either undergoing processing or waiting in a queue for processing can also

42 3 Modeling and Analysis Tools

Queue Server

Customer in Service

Customers in queueCalling population

Figure 3.3: Components of a simple queueing system

be determined based on the arrival and departure information. This number
of jobs is called work-in-process (WIP). The arrival process of the calling
population is usually characterized in terms of inter-arrival times of succes-
sive customers. The queueing discipline determines which customer will be
selected for service when a server becomes available. Common queueing dis-
ciplines include the first-in-first-out (FIFO) or last-in-first-out (LIFO) rules.
Service time can be a constant or can have a random duration. Queueing
theory is a mathematical approach to analyze queueing systems.

WIP and CT usually vary over time. Because it is difficult to treat this time
dependency in analytic models, we are interested in time-averaged values. A
queueing system is called steady state when the probability that the system
is in a given state is not time-dependent. The steady-state values for WIP
and CT can be considered as time-averaged values as the time becomes very
large. Because we consider steady-state systems for a long time horizon, the
values of WIP and CT do not depend on the initial conditions of the system.
The following equation

WIP = λ CT (3.21)

holds for a manufacturing system that satisfies steady-state conditions (see
Little [165]). The quantity λ is the long-run input rate of the jobs to the
server. Equation (3.21) is called Little’s law. We consider a single server
system with exponentially distributed inter-arrival times with mean rate λ
and exponentially distributed service times with mean rate μ . It can be shown
that the steady-state probability that n jobs are in the system, denoted by
P(N = n), is given by

P(N = n) =

(

1− λ
μ

)(
λ
μ

)n

(3.22)

3.2 Decision Methods and Descriptive Models 43

for n = 0,1,2, . . . , where we denote by N the long-run number of jobs in this
system (cf. Curry and Feldmann [55]). We use pn :=P(N = n) for abbreviation.
The expected WIP of the system is the expected value of a random variable
that is distributed according to the discrete probability distribution (3.22).
We obtain

WIP = E(N) =
∞

∑
n=1

npn =
λ

μ −λ
. (3.23)

It is clear that λ < μ has to be fulfilled to ensure a steady state for this
system. Based on Little’s law, we can compute the long-run CT as

CT =
1

λ − μ
(3.24)

because exponentially distributed inter-arrival times with mean rate λ are
induced by a Poisson arrival process with mean rate λ .

When we relax the assumption of exponentially distributed inter-arrival
and service times, the following approximation formula is still valid for the
expected value of the time that a job spends in a queue. The corresponding
random variable is denoted by Tq. The service time is modeled by the random
variable Ts. We obtain for CTq := E(Tq)

CTq ≈
(

C2
a +C2

s

2

)(
u

1− u

)

E(Ts), (3.25)

where we denote by C2
a and C2

s the squared coefficient of variation of the inter-
arrival time and the squared coefficient of variation of service times, and we
set u= λ/μ for abbreviation. The squared coefficient of variation for a random
variable T is defined as C2(T) := Var(T)/E(T)2. The approximation (3.25) is
called the Kingman diffusion approximation (see Hopp and Spearman [119]).

There is a notation introduced by Kendall [138] for queues. It is a five-
field notation, where two consecutive entries are separated by a slash. The
first entry specifies the inter-arrival time distribution, while the second entry
provides information regarding the service time distribution. The third entry
specifies the number of parallel servers. The maximum number of jobs allowed
in the queueing system at one time is given by the fourth entry. Finally,
the optional fifth entry describes the queueing discipline used. For examp-
le, M/M/1/∞/FIFO refers to a system with exponentially distributed inter-
arrival and service times, a single server, an infinite capacity queue, and FIFO
queueing discipline. When the fourth parameter is infinite, it is often omitted.
General inter-arrival or service times are denoted by the symbol G, while the
symbol M (Markovian) is used for exponentially distributed inter-arrival or
service times.

In addition to the single-stage queueing model described above, it is pos-
sible to analyze the performance of queueing networks. For a more detailed
introduction into queueing theory (including queueing networks) with appli-

44 3 Modeling and Analysis Tools

cations to manufacturing, we refer to text books like [55, 119]. A survey that
also includes a discussion of some limitations of classical queueing theory in
semiconductor manufacturing can be found in Shanthikumar et al. [281].

3.2.8 Discrete-Event Simulation Techniques

Discrete-event simulation is the second method that is able to deal with
stochastic decision problems. Queueing theory relies heavily on specific dis-
tributional assumptions of the underlying stochastic processes. In many real-
world situations in semiconductor manufacturing, these assumptions are not
fulfilled [281]. Therefore, we introduce discrete-event simulation as another
important tool for decision-making in manufacturing that takes the stochas-
tic and dynamics of the BS and the BP implicitly into account, but one that
is based on less restrictive assumptions than queueing theory.

Simulation models of wafer fabs are of specific interest in the remainder of
this monograph. Simulation is used to describe a process in a time-dependent
manner (cf. Law [150] and Banks et al. [21]). Depending on the time progress
or method, we differentiate between discrete-event and continuous simulation.
In the first case, the timing of future events is determined, and the simula-
tion jumps to the next future event. In some cases, we consider an equidistant
time progression. In continuous simulation, infinitesimal small time steps are
made. Continuous simulation is basically the numerical treatment of differ-
ential equations where difference equations are used to describe the changes
in system variables over discrete time steps.

In this monograph, we mainly refer to discrete-event simulation. This type
of simulation is based on the metaphor that entities flow through the sim-
ulation model and occupy scarce capacity that is offered by servers. There
is some competition of the entities for the servers, i.e., they have to wait
before they are served. In simulation models of wafer fabs, the servers are
represented by resources and the moving entities by jobs.

Next, we briefly describe the main ingredients of a simulation model for
wafer fabs. Depending on the goal of a simulation study, models of different
complexity can be used ranging from very detailed and close to the real wafer
fab to coarse and abstract. For industrial studies, very detailed models are
generally used. In academic studies, both detailed and simple models are
applied. A simulation model of a wafer fab can be considered as a model
system SM. Typical model components for complete wafer fab models are as
follows:

• Equipment, i.e., the set of machines
• Operators and secondary resources
• Components related to material handling
• Process flows

We start by describing the JS-related (see Sect. 2.2.1) modeling issues. Apart
from cluster tools, there is generally no need to model the internal behavior

3.2 Decision Methods and Descriptive Models 45

of a machine, i.e., to have a detailed mechanical model or a model of the
controllers that work inside a machine. Such models are used by equipment
manufacturers but do not often lead to additional insight while analyzing and
controlling a wafer fab. Thus, the model of the JS for wafer fabs can be kept
rather simple. The typical machine-related parameters are as follows:

• Name of the machine group
• Number of machines in the machine group
• Name of the machine
• Batch-size information
• Batch formation criterion
• Setup time
• Machine qualification and dedication requirements
• Preventive maintenance cycles
• Breakdown-repair cycles

A batch machine is able to process more than one job at the same time.
This number has to be specified as the number of jobs or wafers that can be
batched together, and it describes the capacity of the batch machine. The
batch formation criterion provides information on which jobs can be batched
together. Often, we have to deal with incompatible job families, i.e., only jobs
from one family can be batched together. Incompatible families are formed
due to the different chemical nature (or processing time) of the different
process steps on the batch machines. Sometimes, only jobs that refer to the
same process step can be used to form a batch.

The setup time is the time that is required to set up a machine before
processing. For a given setup state, it can be constant or depend upon the
current setup state. In the latter case, we have sequence-dependent setups,
and all setup times of a particular machine are listed in a setup time matrix.

Semiconductor manufacturing equipment is complex, and considerable ef-
fort is spent to keep the equipment running properly. Preventive mainte-
nance activities are included in most wafer fab level simulation models. Of-
ten, weekly, monthly, quarterly, and yearly schedules are included. Despite
efforts to prevent failures of the equipment, failures are still quite significant
for many types of equipment.

One or more machine breakdown-repair cycles may exist for a machine or
the entire machine group. Each cycle definition consists of a time-to-failure
(TTF) and a time-to-repair (TTR) probability distribution function. In some
cases, the time to failure is not counted continuously but only when the
machine is busy. In other cases, failures depend upon the number of jobs or
wafers processed and not upon the time-in-process state or the simulation
time in general. In these latter cases, the TTF has to be given in multiples
of the processing time. When there is more than one cycle for a machine, it
has to be specified how to deal with parallel failures. Often, the beginning of
a failure that happens when the machine is already down is postponed to the
end of the current failure. Another issue concerns parallel failures on different

46 3 Modeling and Analysis Tools

machines of a machine group. In particular, if the failures are used to model
maintenance actions, they will generally not be performed in parallel to avoid
unnecessary waiting times at the machine group buffer. The failure model
has to reflect this accordingly. Problems related to the modeling of machine
breakdowns in semiconductor manufacturing are described by Schömig and
Rose [277].

Next, we consider the representation of operators as human decision ma-
kers in simulation models of wafer fabs. In general, due to the lack of accurate
models, only simple models are applied for the humans participating in the
wafer production process. In particular, interaction of operators is not mo-
deled, i.e., the social or communication component of the human workforce
is ignored. In addition to the parameters given below, operator control has to
be implemented, i.e., what happens if more operators are required than are
available. Usually, dispatching rules are applied in this case. The following
information is required to model operators:

• Name of the operator group
• Number of operators in the group
• Skills of the operator or the operator group
• Staffing information
• Operator break cycles

The modeling of skills is important because most operators in a wafer fab
are certified to run one or two machines because of the complexity of the
equipment and the training costs. There are, however, a few operators who are
cross-trained for multiple types of equipment. Similar to machines, operators
have break cycles. There are regular breaks like lunches and random breaks
like going to the bathroom. In addition, it is sometimes modeled whether
operators are allowed to have breaks together or whether the breaks have to
be staggered. Staffing information is required when the number of operators
changes from shift to shift. It is also possible to model holidays. We refer to
Mosley et al. [210] for an example of modeling operators in simulation models
of wafer fabs. But often, operators are not included in simulation models of
wafer fabs. This coincides with the changing role of operators in most highly
automated wafer fabs (cf. the comments in Sects. 2.2.2 and 2.2.3).

Besides operators, sometimes, the detailed modeling of other auxiliary re-
sources is necessary, especially, when these resources are scarce. Reticles in
the photolithography area are an important example. The modeling of reticles
within a simulation model is described, for example, in [41, 201, 228].

The main components of the MS that have to be part of the simulation
model are as follows:

• Carriers
• Stockers and their assignment of bays or certain machines
• Transportation system

Note that often specialized simulation packages are used to model the JS
and the MS of wafer fabs. For example, the commercial simulation packages

3.2 Decision Methods and Descriptive Models 47

AutoSched AP and AutoMod are used to simulate wafer fabs. AutoSched AP
simulates the JS of a wafer fab, whereas AutoMod is responsible for the simu-
lation of the corresponding MS. The two simulation engines can be coupled
by the model communication software of Brooks automation. This approach
is used, for example, by Schulz et al. [278] and Pillai et al. [239] for 300-mm
full-factory simulations. More simulation studies related to the MS of wafer
fabs can be found, for example, in [130, 282, 316].

We continue by describing the representation of the BP within a simulation
model. A process flow is required for each product manufactured in a wafer
fab (see Sect. 2.2). It lists all process steps required to finish the product. In
general, process flows are deterministic, but, depending on the product, it
may contain alternative subprocess flows or rework loops. For each process
flow, the following parameters are supplied for each process step:

• Name of the process step
• Name of the machine or machine group where the process step has to take
place

• Operator requirements, i.e., the required qualification of the operators,
the number of operators, and whether they have to be present during the
whole period of loading, processing, or unloading or only during portions
of these operations

• Auxiliary resources required
• Processing time
• Load and unload times
• Required setup state of the machine
• Amount of scrapped material
• Rework loops
• Alternative flows

The processing time is given per process step and consists of several compo-
nents. Often, a machine can be loaded with more wafers than can be pro-
cessed; processing of these wafers takes place in several portions. Therefore,
the processing time often depends on the number of wafers or on the number
of jobs. As a consequence, the processing times of jobs of the same product
at a certain process step are not necessarily the same, for example, due to
scrapped wafers. Note that some machines, like steppers in the photolithog-
raphy work area or pipeline tools, require more sophisticated approaches to
determine the processing time (see Mönch et al. [201] for the stepper case
where the processing time depends on the product, on the mask level, and
also on the number of ICs on a single wafer in addition to the number of
wafers). The processing time for batches on diffusion furnaces in wafer fabs
depends on the family of the job. The processing time associated with a
batch on burn-in ovens at the back-end stage is determined by the longest
processing time of one of the jobs that form the batch.

Note that in the case of cluster tools, the situation is even more complicated
because the processing time depends on the sequence of processed jobs (see

48 3 Modeling and Analysis Tools

Sect. 2.2 for more details on cluster tools). In principle, we have to model
the internal behavior of a cluster tool to determine these processing times.
Therefore, usually only simple processing time models are used in simulation
models of full-size wafer fabs (see Shikalgar et al. [282]).

The load time tload and unload time tunload are defined as the time that is
required to move a job to or from a buffer or other material handling system
device before or after processing. Of course, tload and tunload have to add to
the processing time.

At certain process steps, sometimes jobs, wafers, or dies are processed in a
way that they become useless for further processing. In this case, a percentage
of units scrapped is provided to reflect this behavior. This percentage is called
the amount of scrapped material.

Rework is closely related to scrapped material. A percentage is given that
a rework loop has to be entered either for the whole job or for several wafers.
If a rework loop occurs, the whole job is processed, or a child job with re-
work wafers is built. The parent job may either wait until the rework loop
is successfully finished and rejoin with the child job, or it may proceed im-
mediately. At the end of the rework loop, a decision is made whether the
job is allowed to continue, whether the job has to repeat the rework loop, or
whether it is scrapped.

In some situations, several subflows are possible to produce different ICs
that come from the same technology, i.e., a process flow consists of a sequence
of subflows. For some positions in this sequence, several subflows are possible.
A certain percentage is given for each of the possible subflows in this situation.
At the end of the subflows, they merge again into a single process flow. It is
possible that the subflow consists of a single process step. In this case, the
term alternative process step is used. The concept of alternative process steps
is important to model heterogeneous machines correctly.

We consider a simulation model of small complexity suggested by re-
searchers from Intel Corporation and described by Spier and Kempf [291]
as an example of a simulation model that contains typical features of a wafer
fab with respect to BS and BP. It contains only three machine groups and
two process flows with six process steps. The process flow is organized in
two layers. Among the machine groups, there is a batch-processing machine
group and a machine group with sequence-dependent setup times. The model
mimics some important features of wafer fabs. We show the process flow in
Fig. 3.4. We call this simulation model the MiniFab model.

The processing times of the different process steps in minutes and the
maximum batch sizes in jobs are shown in Table 3.1.

Simulation studies with simulation models of full-size wafer fabs tend to
be very time-consuming. This is partially caused by modeling a lot of details
that are not always necessary. That is why some researchers and simulation
practitioners started to consider reduced simulation models [121, 231, 263,
265, 269]. The reduction is often achieved by modeling only process steps
that are related to bottleneck machines. The remaining process steps are

3.2 Decision Methods and Descriptive Models 49

Starts

Machine Group1
- Machine A
- Machine B

Machine Group 2
- Machine C
- Machine D

Machine Group 3
- Machine E1

2
3

4

5
6

Outs

7

Figure 3.4: Process flow of the MiniFab model

Table 3.1: Process flows and maximum batch sizes of the MiniFab model

Process step Machine group Processing time Maximum batch size

1 1 225 3
2 2 30 1
3 3 55 1
4 2 50 1
5 1 255 3
6 3 10 1

replaced by fixed time delays instead of modeling the processing of single
process steps on non-bottleneck machines. However, it is far away from being
trivial to find appropriate delays. Often, a large amount of simulation runs
with full-size simulation models are also required to assess the quality of a
reduced simulation model.

Each simulation model requires checking the logic of the model. This pro-
cess is called verification. At the same time, it is also necessary to compare
the results of the simulation model to reality. This step is called validation.
It is usually an iterative process [21, 150] that tends to be time-consuming in
the case of wafer fabs.

Therefore, reference simulation models are available for the research com-
munity to reduce the effort needed to create simulation models and to validate
and verify them. Such simulation models are available in the testbed hosted
at the modeling and analysis of semiconductor manufacturing (MASM) lab-
oratory as a result of the measurement and improvement of manufacturing
capacity (MIMAC) project (cf. Fowler and Robinson [83] for a description of
these models that are part of the MASM Lab testbed). The MIMAC 1 model
is also briefly described in Sect. 4.4.

It appears that, while simulation models are well established for single
wafer fabs, it is not true for semiconductor supply networks. Only some pre-
liminary work has been published for simulation modeling of an entire supply
network (cf. Duarte et al. [74] for some recent work).

50 3 Modeling and Analysis Tools

Usually, we use simulation when the analytic methods described in
Sects. 3.2.2–3.2.7 do not adequately represent the system being studied.
For example, in some situations, the objective function is nonlinear, some
of the restrictions cannot be modeled by a set of linear constraints, or the
optimization problem is simply too large to apply branch-and-bound tech-
niques. While discrete-event simulation offers some advantage with respect
to modeling capabilities, it takes considerable effort to build a simulation
model, mainly because of data gathering and modeling difficulties. The main
data needed to create a simulation model was described in this subsection.
Experience in statistics is necessary to perform a meaningful interpretation
of the simulation output.

We start by describing simulation techniques for the support of produc-
tion planning and control decisions. Discrete-event simulation can be used to
represent the BS and the BP. In this case, they are identified by the discrete-
event simulation model. We will see that this approach is useful to assess the
performance of planning and control algorithms in Sect. 3.3. In the simplest
form of this approach, simulation can be used to decide the rule for which job
should be processed next on an available machine. Therefore, discrete-event
simulation is a tool to assess the performance of dispatching rules.

When simulation is used as a decision-making tool and not for identifying
the BS and the BP, then either performance measure values as a result of
planning or control instructions for BS and BP are estimated by simulation, or
certain parameters that describe the behavior of the BS of interest are deter-
mined using simulation. Therefore, we differentiate between simulation-based
optimization, iterative simulation, and finally the determination of immedi-
ate control instructions, i.e., which job has to be processed next on a given
machine by simulation.

Simulation-based optimization starts from the idea that it is in some situa-
tions difficult to describe and evaluate an objective function (cf. Fu et al. [91]
and Fu [92] for a more detailed description of the main concepts). In this sit-
uation, the objective function can be implicitly represented by a correspond-
ing simulation model. Simulation-based optimization therefore also requires
an appropriate simulation model. Optimization is typically performed using
metaheuristics such as SA, GA, tabu search, or VNS. These methods tend to
be computationally expensive. Therefore, the level of detail for the simulation
model is important in simulation-based optimization applications. Stochastic
effects typically are not neglected. They have to be taken into account both
for the metaheuristic that is used for optimization and the simulation model
itself. The overall scheme for simulation-based optimization applications can
be described as follows.

Algorithm Simulation-Based Optimization

1. Start from a given initial solution.
2. Use the simulation model in order to estimate the objective function value

by multiple runs in a stochastic setting.

3.2 Decision Methods and Descriptive Models 51

3. Modify the incumbent solution by local changes using a certain meta-
heuristic.

4. Repeat the algorithm from step 2 onwards until a given stopping criterion
is met.

Simulation-based optimization can be used either on the entire BS and BP
level or for subsystems and subprocesses of it, respectively.

In contrast to simulation-based optimization, iterative simulation is used
to find appropriate values for certain parameters of a decision model for
planning or control problems. In production planning models, often the CT
is such a parameter. Then, the production planning or control problem is
solved using the current values for the parameters of interest. The resulting
solution provides input for the discrete-event simulation model. For example,
the quantity of jobs to be released is determined by a production planning
model, then the parameter of interest is estimated using simulation. The
current parameter value is updated using the simulation results. The updated
value is used again as an input of the production planning or control model.
The overall scheme can be summarized as follows.

Algorithm Iterative Simulation

1. Use an appropriate initial value ρcurr := ρinit for the unknown parameter ρ .
Solve the production planning or control problem using ρinit.

2. Perform a simulation using the solution of the production planning and
control problem as input for the simulation.

3. Determine the real parameter value ρsim as a result of the simulation.
4. Determine a new current parameter value ρcurr based on the actual values

for ρcurr and on ρsim using, for example, exponential smoothing.
5. Solve the production planning or control problem again using the updated

value for ρcurr.
6. Repeat the scheme starting in step 2 until a given termination criterion is

met.

Often, only a few iterations are necessary to achieve the desired maximum
difference between the parameter values in two consecutive iterations. Fur-
thermore, the initial value of the parameter of interest is often not a crucial
factor. Iterative simulation in a supply chain context is discussed, for exam-
ple, in Almeder et al. [7]. In this monograph, we will also see applications for
setting parameters of dispatching rules due to Vepsalainen and Morton [312]
in Chap. 4 and for production planning applications in Chap. 7.

Finally, discrete-event simulation can be used to determine immediate con-
trol instructions. Therefore, a simulation model that represents the current
state of the BS and the BP, including a certain set of dispatching rules to
decide which job has to be processed next, is necessary. An assignment of jobs
to machines and sequences of jobs on single machines are determined using
the dispatching rules. When different dispatching rules are used, multiple as-
signments and sequences are the result. Based on the preferences of a human
decision maker, one specific assignment and the corresponding sequences are

52 3 Modeling and Analysis Tools

chosen and then are used to make the decisions in the production control
system. This concept is also known as simulation-based scheduling and will
be discussed in more detail in Sect. 5.2.

3.2.9 Response Surface Methodology

Running simulation experiments is time-consuming, especially when simula-
tion is used to find an appropriate setting of several parameter values for the
BS and the BP with respect to a certain performance measure. An exhaus-
tive search by simulation is not possible from a computational burden point
of view. In this case, meta-models are an appropriate way to treat this kind
of optimization problem. To model this class of problems, we assume that
the performance measure value, called the response, can be expressed in the
following form:

y := f (ξ1, . . . ,ξk)+ ε, (3.26)

where the form of the true response function f is unknown and ε represents
the variability. The controllable input variables are denoted by ξi, i = 1, . . . ,k.
They represent the parameter values of the BS and BP that have to be varied.
The term ε is treated as a statistical error. We assume that it has a normal
distribution with mean zero and variance σ2, i.e., ε ∼ N(0,σ2). The variables
ξi are called natural variables. However, it is often more convenient to work
with dimensionless variables that are normalized, i.e., from [−1,1]. These
variables are called coded variables and can be achieved by some transforma-
tion of the natural variables. The true response function can be represented
in the form η := f (x1, . . . ,xk). Because f is unknown and often complicated,
we approximate it by a low-degree, usually first- or second-order polynomial.
Second-order meta-models are of the general form

y := β0 +
k

∑
i=1

βixi +
k

∑
i=1

βiix
2
i +∑

j
∑
i�= j

βi jxix j + ε, (3.27)

where the unknown coefficients β0 and βi,βi j, i = 1, . . . ,k, j = 1, . . . ,k are called
the parameters of the model that have to be fitted from results of simulation
runs. Note that we obtain a first-order model out of the second-order model
(3.27) when we select βii = 0 and βi j = 0. While least square analysis is often
used to estimate the significant parameters for the meta-model, analysis of
variance techniques is used to determine which parameters are statistically
significant.

We assume that the discrete-event simulation model is a reasonable re-
presentation of the BS and the BP. If the meta-model is an adequate ap-
proximation of the corresponding simulation model, then the optimization of
this model will be approximately equivalent to the optimization of the BS
and BP. Therefore, after we have determined the second-order meta-model,
we can use it instead of the simulation model to optimize the response by

3.2 Decision Methods and Descriptive Models 53

determining appropriate values for the coded variables. By using standard op-
timization techniques, i.e., steepest descent for the first-order model and con-
jugate gradient methods for the second-order meta-model, the corresponding
optimization problems can be solved using standard optimization software.

For a more detailed introduction into the response surface methodology,
we refer to Myers et al. [212]. Some applications of meta-modeling techniques
in semiconductor manufacturing are shown by McAllister et al. [177]. Chapter
4 contains applications related to the design of blended dispatching rules in
semiconductor manufacturing.

3.2.10 Learning Approaches

Following Russell and Norvig [273], a basic learning system contains a per-
formance element and a learning element. The performance element decides
what actions are to be taken, whereas the learning element modifies the per-
formance element to allow it to make better decisions. The learning element
takes feedback from the environment into account during learning. A reason-
ing mechanism is responsible for the learning.

In a certain sense, the regression analysis described in Sect. 3.2.9 might be
considered to be learning a continuous function from examples of its input
and output. The resulting meta-model is the performance element, while least
square analysis is used as the reasoning mechanism.

Next, we continue with a discussion of neural networks as a widely used
learning approach. A neural network consists of a set of nodes, called neurons,
and the neurons are connected in different ways. Each neuron is used to
implement an activation function T :

yi := T

(
n

∑
j=1

wjiu j

)

. (3.28)

This function determines output values as a result on given input values.
Input values are denoted by u j, j = 1, . . . ,n. The output values are denoted by
yi, i = 1, . . . ,m. The quantities wji, j = 1, . . . ,n, i = 1, . . . ,m are the correspon-
ding weights. The neurons are organized in layers. Besides input and output
layers, a neural network also has internal layers. Input values are transformed
into output values using the weighted input values.

Applying neural networks to make a certain decision requires determining
appropriate input values to characterize the problem and to represent the
solution of the problem by the output values. Training data, i.e., a certain set
of problem instances with known high-quality solutions, also called examples,
is used to discover how the output values depend on the input values. It is
clear that the neural network as a meta-model is the performance element,
while the learning approach for the weights is the learning element.

The main advantage of neural networks is their ability to learn by adap-
ting the weights. Furthermore, neural networks are able to deal with noisy

54 3 Modeling and Analysis Tools

data. Nonlinear functions can be represented by neural networks. The basic
limitation of the neural network approach is that a new network has to be
constructed when the underlying situation has changed. This often requires
a large training effort. At the same time, training data is often not available
in case of a dynamic and stochastic BS and BP. In Chap. 5, we will mention
applications of neural networks in scheduling.

Inductive decision trees are another learning approach. A decision tree
takes, as input, a situation described by a set of attributes and returns the
predicted output value for the input. A decision tree makes decisions by
performing a sequence of tests. The tree consists of internal nodes and leaf
nodes. The leaf nodes represent the output value that is the result when
this leaf is reached. The internal nodes test the value of one of the properties.
The learning is performed by using a set of examples, i.e., a mapping between
situations and output values to determine the decision tree (see Russel and
Norvig [273]).

3.2.11 Summary of Decision Methods and Descriptive
Models

Finally, we would like to combine the different type of models presented in
Sect. 3.1.2 and the various methods from Sect. 3.2. The resulting scheme is
shown in Fig. 3.5. We can clearly see that while discrete-event simulation is
both descriptive and prescriptive at the same time, it is always dynamic. Only
dynamic programming and discrete-event simulation are deterministic and
stochastic. Queueing theory is descriptive and contains elements of both static
and dynamic models, but it is stochastic. The response surface methodology
is descriptive and can be also prescriptive.

It is not reasonable to assign the learning approaches discussed in
Sect. 3.2.10 to any of the model types from Sect. 3.1.2 because learning
models are often used to support the parameter selection process for decision
methods. Therefore, we avoid a specific assignment.

It is interesting to remark that, as already stated in Sect. 3.1.2, dynamic
and stochastic models are difficult to analyze. We can see from Fig. 3.5 that
only discrete-event simulation is able to deal with these kinds of models.
Based on this insight, we can conclude that discrete-event simulation is of
particular importance.

3.3 Performance Assessment

In this section, we present a performance assessment methodology. In addi-
tion, we discuss an architecture that allows for simulation-based performance
assessment of production planning and control approaches.

3.3 Performance Assessment 55

dynamicstatic

deterministic

stochastic

descriptiveprescriptive prescriptive

Discrete-
event

simulation

Branch-and-
bound

MIP

Neighbor-
hood search/

GA

Dynamic
program-

ming

Queueing
theory

Stochastic
program-

ming

Response
surface

methodology

Figure 3.5: Scheme for decision methods and descriptive models

3.3.1 Performance Assessment Methodology

When a new decision-making algorithm is proposed, in the beginning, its
performance is unknown. Therefore, it is necessary to assess its likely perfor-
mance before it can be applied in a wafer fab. There are, in principle, two
possibilities. The first one takes a snapshot of the state of the BS and the
BP and then determines the values of certain performance measures. This
type of performance assessment is described in some detail in Rardin and
Uzsoy [257]. The second one repeats running the decision-making algorithm
in a time-based or event-based manner taking the current state of the BS and
the BP into account. We refer to the first approach as a single instance-based
performance assessment, whereas the second one is called a rolling horizon-
type performance assessment scheme. Note that the single instance-based
approach is rather static, while the latter one is much more dynamic and
takes appropriate feedback of the BP and BS into account.

In a next step, we describe a performance assessment methodology that
can be applied in both situations. In this methodology, a fixed production
planning or control approach with unknown performance is considered. In
order to assess its performance, the following scheme is suggested:

56 3 Modeling and Analysis Tools

• Determination and specification of the appropriate performance measures
• Determination of production planning and control approaches used for
comparison with the new approach

• Description of different problem instances and simulation scenarios in the
first and second cases, respectively, and specification of designed experi-
ments

• Specification of the performance assessment strategy
• Description of the hardware and software environment for the performance
assessment

• Running the new planning and control approach for each problem instance
or, in a rolling horizon manner, by discrete-event simulation for each sim-
ulation scenario in the first and second cases, respectively, and discussion
and interpretation of the results

We start by describing the difference between direct and indirect performance
measures. This distinction corresponds to the planning and control setting
presented in Fig. 2.2. Direct performance measures consider quantities that
have direct influence on the performance of the manufacturing system related
to the BS and the BP. Throughput (TP), CT (cf. Sect. 3.2.7), and total
weighted tardiness (TWT) are examples of direct performance measures. TP
is defined as the number of completed jobs leaving a system within a certain
period of time. The TP rate is consequently the number of completed jobs per
unit of time. In the MS, the number of moves of the vehicles is a TP-related
measure. Closely related to TP is the makespan Cmax of a set of n jobs. It is
defined by the expression

Cmax = max
{

Cj| j = 1, . . . ,n
}
, (3.29)

where we denote by Cj the completion time of job j. The measure CT for job
j is defined as

CT j :=Cj − r j, (3.30)

where r j denotes the ready (release) time of j. The average CT (ACT) of n
jobs is given by

ACT :=
1
n

n

∑
j=1

(Cj − r j) . (3.31)

ACT is an important measure in semiconductor manufacturing because a
small ACT value may lead to large yield because the probability of contam-
ination on the shop floor is smaller in case of a small CT (see Atherton and
Atherton [14]). The carrier delivery time (CDT) is the counterpart of the
BS-related CT within the MS. In some situations, the variance of CT is of
interest. It is defined by

Var(CT) := E((CT−E(CT))2)≈ 1
n− 1

n

∑
j=1

(CT j −ACT)2. (3.32)

3.3 Performance Assessment 57

Closely related to CT is the measure total flow time or total completion time
(TC). It is defined as

TC :=
n

∑
j=1

Cj = nACT+
n

∑
j=1

r j, (3.33)

i.e., minimizing ACT is equivalent to minimizing TC. Its weighted counter-
part is the total weighted completion time:

TWC :=
n

∑
j=1

wjCj, (3.34)

where we denote by wj the weight of job j. On-time delivery performance-
related measures are also important because of possible customer satisfaction
and hence advantage in the fierce competitive market. The tardiness Tj of a
job j is given by

Tj := max(Cj − d j,0), (3.35)

whereas the performance measure TWT is defined by

TWT :=
n

∑
j=1

wjTj, (3.36)

where we denote by d j the due date of job j. The average weighted tardiness
(AWT) is defined as

AWT :=
1
n

TWT. (3.37)

When we have wj ≡ 1, then we are talking about total tardiness (TT). We
use the notation AT for the average tardiness.

Somewhat related to TT is the maximum lateness. This performance mea-
sure is defined as follows:

Lmax := max{Lj| j = 1, . . . ,n}, (3.38)

where we denote by Lj :=Cj − d j the lateness of j. Similar to Var(CT), the
variance of the lateness Var(L) is defined by

Var(L) := E((L−E(L))2)≈ 1
n− 1

n

∑
j=1

(Lj −AL)2, (3.39)

where the average lateness (AL) is given by AL := 1/n∑n
j=1 Lj.

Finally, in some situations, the number of tardy jobs (NTJ) is of interest.
This performance measure is defined as follows:

NTJ :=
n

∑
j=1

Uj, (3.40)

58 3 Modeling and Analysis Tools

where we have

Uj :=

{
1, if 0 <Cj − d j for job j
0, otherwise.

(3.41)

The weighted counterpart of NTJ, the weighted number of tardy jobs
(WNTJ)

WNTJ :=
n

∑
j=1

wjUj, (3.42)

is also considered. TT, TWT, Lmax, NTJ, and WNTJ are important measures
in terms of on-time delivery performance. In Table 3.2, more examples for
direct performance measures are shown.

Table 3.2: Examples for direct performance measures

Class Example

due date-oriented maximum lateness Lmax := max{Cj −d j| j = 1, . . .,n}
throughput-oriented TP of a certain work area
cycle time-oriented ACT of the jobs of a certain product family

load-oriented WIP

Note that in many practical situations, we have to deal with multiple
criteria that are sometimes in conflict to each other. The desirability function
approach in optimizing multiple criteria of interest was originally suggested
by Derringer and Suich [66]. The approach transforms each objective value
into a value between 0 and 1. Thus, each criterion yi is converted into an
individual desirability function di that varies over the range zero to one. If
yi is outside the acceptable range defined by the user, then di = 0. However,
if yi meets the goal, then di = 1. Let Ui be the maximum allowable value for
the response yi, and let Gi be the goal value for yi. We define di as follows:

di :=

⎧
⎨

⎩

1, if yi < Gi

((Ui − yi)/(Ui −Gi))
zi , if Gi ≤ yi ≤Ui,

0, otherwise
(3.43)

where zi > 0 is a real number known as the weight on the desirability function.
When zi = 1 for each objective i, the desirability function is linear. Choosing
zi > 1 places more emphasis on being close to the goal value, while setting
0 < zi < 1 decreases importance on proximity to the goal value. Once the
individual desirabilities have been calculated, the combined desirability D
that is to be maximized is computed as the geometric mean of the individual
desirabilities. We obtain for the case of m desirabilities:

D :=

(
m

∏
i=1

di

)1/m

. (3.44)

3.3 Performance Assessment 59

We will see applications of the desirability function approach related to dis-
patching and scheduling in Chaps. 4 and 5, respectively.

In contrast to direct performance measures, indirect performance measures
are not directly related to the performance of the manufacturing system. They
are used to evaluate properties of certain production planning and control
algorithms. Consequently, they are related to the PS, PP, CS, and finally
the CP. Robustness and stability measures are examples for this class of
performance measures.

Performance measures related to robustness measure the change in the
objective value of a plan or schedule after plan or schedule revisions. Sta-
bility of a plan or schedule is defined as the deviation of the final plan or
schedule related to the original plan or schedule (cf. [106, 141, 233]). The
deviation of two schedules can be measured, for example, as the difference
of the completion times of jobs. Stability measures the difference of initial
and of executed plans and schedules under the influence of disruptions. More
indirect performance measures are shown in Table 3.3.

Table 3.3: Examples for indirect performance measures

Class Example

re-planning effort-oriented number of required re-planning activities
run time-oriented run time of a certain production planning algorithm

agility time needed to obtain the original WIP after the
breakdown of a major bottleneck machine

stability deviation of the final plan or schedule from the
original one

Next, we have to discuss production planning and control approaches for
comparison with the new approach. Decentralized and centralized produc-
tion control approaches can be distinguished. Hierarchical approaches are
somewhere between these approaches. Decentralized approaches work on lo-
cal data, and coordination and cooperation issues become important in order
to avoid the limitation of the myopic view of decentralized approaches. Dis-
patching rules in semiconductor manufacturing are an example of this type
of approach (cf. Chap. 4 for more details on dispatching rules). Centralized
approaches are given, for example, by LP, MIP, and by various kinds of neigh-
borhood search techniques.

Often, it makes sense to use exact procedures like branch-and-bound or
MIP described in Sect. 3.2 for small-size problem instances to ensure the cor-
rectness of implementations and to get a sense of the performance of the new
approach. For large-size problem instances, heuristics are used for compar-
ison. In some situations, it is possible to compare the performance of the
new approach with the approach that is used in the company by considering
problem instances or simulation models and the corresponding production
planning and control instructions from the company.

60 3 Modeling and Analysis Tools

We describe now the determination of problem instances and simulation
scenarios. We start with the generation of synthetic problem instances. In the
case of individual problem instances, we determine a set of factors that we ex-
pect to have an impact on the performance of the new algorithm. We consider
levels for each factor, i.e., we vary the values of the factors in a controlled way.
Often, the levels are selected as realizations of a random variable that follows
a prescribed probability distribution. In the case of full factorial experiments,
problem instances are generated for each factor combination. Usually, a cer-
tain number of stochastically independent problem instances are generated
for each factor combination. Methods from the theory of designed experiments
can be used to study the impact and the effect of different factors (cf. Mont-
gomery [208]). One of the primary approaches to designing an experiment is
to select the location of design points to optimize some criterion function; this
is often called optimal design of experiments (cf. Pukelsheim [249]). Typically,
this criterion is related to the variance/covariance matrix of the parameters
in the model. The most popular optimization criterion is D-optimality, which
seeks to minimize the volume of the joint confidence region of all the param-
eters in the model.

It is also possible to avoid the generation of problem instances by
taking problem instances directly from the BP. Alternatively, for certain
classes of problems, benchmark instances are publicly available (cf. the
OR-Library [220] for a collection of such problem instances available over
the web).

Performance assessment experiments for rolling horizon approaches are or-
ganized as different simulation scenarios. In contrast to the problem instance
case, usually the number of scenarios is fairly small. A single simulation sce-
nario is given by a set of independent parameters, a range of variation for the
parameters, and a set of dependent variables, i.e., basically the performance
measure values. Each scenario is represented by a specific simulation model.
By using designed experiments (see Montgomery [208]) and meta-modeling
techniques like response surface methodology (see Myers et al. [212] and
Sect. 3.2.9), it is possible to reduce the number of required simulation runs by
constructing an appropriate meta-model, often a regression model, and opti-
mizing the performance measure values using the simpler meta-model instead
of the simulation model. Furthermore, modern variance reduction techniques
can also help to decrease the number of necessary simulation runs (cf. McAl-
lister et al. [177]). Often, the simulation scenarios are based on data that is
collected in a wafer fab. But at the same time, the scenarios are often also
based on reference simulation models like the MASM Lab testbed (see also
the description in Sect. 3.2.8). The usage of such public benchmark models
offers some additional advantage as the results are now comparable because
they are company-independent.

The choice of the performance assessment strategy is important because
of the stochastic behavior of manufacturing systems. There are two main
possibilities to assess the performance of a system in simulation modeling.

3.3 Performance Assessment 61

In the first case, the stationary behavior of a complex manufacturing sys-
tem is of interest. After the warm-up period, the performance indicators of
interest are measured. Long runs have to be performed. However, because
of the stationary behavior, a relatively small number of independent runs is
often enough (see Law [150]). The performance measure values are taken as
the average of the performance measure values for the single runs. Besides
average values that estimate the mean, confidence intervals are provided to
estimate the range of values, which is likely to include the unknown perfor-
mance measure value.

Looking at the transient behavior of a manufacturing system is the second
possibility. Transient behavior appears during the transition phase from one
system state to another. Product mix changes, ramp-up, and introduction of
new machines lead to transient behavior of the manufacturing system. Study-
ing a manufacturing system in the transition phase requires the measurement
of the performance measures of interest in a time-dependent manner. As op-
posed to the stationary case, a considerably larger number of simulation runs
is required in order to obtain statistically significant results for the perfor-
mance measures. The length of a single run is determined by the length of
the transition phase. The performance measure values are calculated as the
average of the performance measure values obtained at a single point of time.

A performance assessment strategy is basically given by the decision about
whether to investigate a stationary manufacturing system or a manufacturing
system in the transient phase from a given stationary to another stationary
behavior or not. Furthermore, the number of replications and the run length
are also part of the performance assessment strategy. In the case of single
problem instances, the maximum amount of computing time for each problem
instance or the number of replications of computations are also elements of
a performance assessment strategy.

In order to compare different production planning and control algorithms
from a run time behavior point of view, it is required to fix a hardware
and software environment for the performance assessment. It is furthermore
required to describe the used load balancing strategy of the computer network
in the case of distributed production planning and control algorithms. In the
final step of the performance assessment scheme, it is required to run the
experiments for all problem instances or all simulation scenarios. Then, the
results have to be analyzed and interpreted. Based on the results, often se-
veral refinements of the design of experiments are necessary.

We note that additional performance measures that are related to the
performance of the BS and the BP of wafer fabs can be found in Leachman
and Hodges [155].

62 3 Modeling and Analysis Tools

3.3.2 Architecture for Simulation-Based Performance
Assessment

We continue by describing a simulation-based architecture that allows for
simulation-based performance assessment of production planning and control
approaches. There are two principle possibilities to incorporate production
planning and control algorithms into a discrete-event simulation tool. In the
first possibility, the production planning and control algorithm basically uses
the information and data on the level of the simulation tool. As a result of this
strategy, proprietary source code is obtained that is difficult to understand
and to maintain. It is rather complicated to implement different production
planning and control approaches. However, for comparison purposes, the abi-
lity to plug in different production planning and control approaches is highly
desirable.

The second strategy is much more flexible. A blackboard-type data layer
(see Mönch et al. [202]) that acts as a mirror of the base process BP emu-
lated by the simulation model is used. The simulation tool is responsible
for an update of the corresponding objects of the data layer in the case of
the occurrence of well-defined events. When, for example, a job is released
to the shop floor, i.e., it is started in the simulation, then a corresponding
job object is created in the data layer. Other events of importance are, for
example, the start of a setup operation of a certain machine or the completion
of a certain process step, i.e., the job leaves a machine. In the latter case, the
state of the job object is changed in the data layer, whereas in the first
case, the state of the machine object is changed. Besides business objects like
machines, jobs, and products, the data layer contains objects that represent
the production planning instructions mp and production control instructions
mc. Furthermore, it contains objects that are used to store statistics. The
simulation engine implements the production control instructions mc in a
dispatching manner.

The data layer is located in the memory of the computer; hence, fast ac-
cess is possible. The incremental, event-driven update of the business objects
avoids time-consuming queries from databases. The object model of the data
layer is much easier to understand and to maintain than the proprietary data
structures of a certain simulation tool. When the BS is segmented into dif-
ferent work areas, a separate blackboard-type data layer can be assigned to
each segment of the manufacturing system. The architecture has to contain
a persistency mechanism that supports object state and performance mea-
sure tracing. Using object-oriented databases seems to be appropriate for
that purpose because of the highly nested objects from the data layer. The
objects of the data layer are stored in a periodic manner.

The built-in mechanism for job selection and machine load of the discrete-
event simulation tool acts as a dispatcher in a natural way. The dispatcher
uses sorted lists with jobs, so-called dispatching lists, calculated using pro-
duction control algorithms. When a machine becomes available in the simu-
lation, the next job to be processed is determined from the dispatching list

3.3 Performance Assessment 63

of the machine. Furthermore, the simulation tool also specifies under what
circumstances the production control algorithm is applied to calculate new
dispatching lists. This feature is denoted as logic for calling of the production
control approach.

The architecture is completed by a demand forecast module and by a
demand generation module. While the first module is designated to the de-
termination of forecast using historical demand, the second one generates
concrete demand that is used as an important input for the planning algo-
rithms of the PS. The PS determines which quantities have to be released in
a certain point of time into the BS. This information is used by the CS to
calculate the mc. The architecture is shown in Fig. 3.6.

Simulation model/simulation engine

CS

Blackboard-type data layer

PS

Demand forecast module Demand generation module

OO-Database

Figure 3.6: Simulation-based architecture for performance assessment

Building production planning and control applications from scratch is not
very common because of available commercial and academic optimization and
scheduling libraries and of available editors for dispatching rules. Examples
are the ILOG solver and scheduler classes (cf. Le Pape [152]), class libraries
for GAs (cf. Pain and Reeves [227]), and the dispatching rule editor from the
simulation tool AutoSched AP. Therefore, an architecture for benchmarking
has to take this fact into account. Because most of the available class libraries
are written in the C++ programming language, the degree of freedom for
choosing an appropriate implementation language for the architecture is lim-
ited. The suggested architecture allows for a plug-in of different production
planning and control approaches.

64 3 Modeling and Analysis Tools

In the described architecture, we only model the JS. However, an exten-
sion of this architecture that also includes the MS of a wafer fab is described
by Driessel and Mönch [71]. In this situation, we have to use one simulation
model for the JS and a second one for the MS. Note that we will provide
certain examples for the usage of the simulation-based architecture for per-
formance assessment of scheduling and production planning approaches in
the remaining chapters of this monograph.

	Chapter 3 Modeling and Analysis Tools
	3.1 Systems and Models
	3.1.1 Representation of Systems by Models
	3.1.2 Types of Models

	3.2 Decision Methods and Descriptive Models
	3.2.1 Optimal Approaches vs. Heuristics
	3.2.2 Branch-and-Bound Algorithms
	3.2.3 Mixed Integer Programming
	3.2.4 Stochastic Programming
	3.2.5 Dynamic Programming
	3.2.6 Neighborhood Search Techniquesand Genetic Algorithms
	3.2.7 Queueing Theory
	3.2.8 Discrete-Event Simulation Techniques
	3.2.9 Response Surface Methodology
	3.2.10 Learning Approaches
	3.2.11 Summary of Decision Methodsand Descriptive Models

	3.3 Performance Assessment
	3.3.1 Performance Assessment Methodology
	3.3.2 Architecture for Simulation-Based Performance Assessment

