
Chapter 4

Dispatching Approaches

In this chapter, we discuss dispatching approaches. Dispatching is on the
lowest level of the PPC hierarchy described in Chap. 2. We start with a tax-
onomy of dispatching rules. A dispatching rule assigns a certain index to
each job waiting in a queue to be processed on a machine or transported by
a vehicle. The job with either the largest or the smallest index is selected to
be processed or transported next. Typical attributes are the ready time, the
processing time, or the due date of a certain operation or of the job itself.
We describe simple dispatching rules that are characterized by an index that
is based only on a small number of attributes of a job or the BS and the BP.
We continue with the discussion of composite dispatching rules. Composite
dispatching rules have an index that is formed by combining indices of simple
dispatching rules.

Batching rules are an extension of dispatching rules. A batching rule helps
to make the batch formation decision, i.e., which jobs are part of the batch,
and also to decide which batch has to be processed next on an available
machine. Some dispatching and batching rules use only information related
to the jobs that wait in front of a machine or machine group, while other
rules may use information regarding machines different from this machine or
machine group. The second type of rules are called time-based look-ahead
rules.

More sophisticated approaches like rule-based systems and several other
approaches to find parameters in batching and dispatching rules are discussed.
We present methods to weight indices so that a rule simultaneously works
towards multiple objectives. Finally, we also describe an approach to discover
appropriate dispatching rules using GAs and discrete-event simulation.

4.1 Motivation and Taxonomy of Dispatching Rules

Dispatching is on the lowest level of the PPC hierarchy described in Chap. 2.
Dispatching rules are used to choose the next job that is processed or

L. Mönch et al., Production Planning and Control for Semiconductor Wafer
Fabrication Facilities, Operations Research/Computer Science Interfaces
Series 52, DOI 10.1007/978-1-4614-4472-5 4,
© Springer Science+Business Media New York 2013

65

66 4 Dispatching Approaches

transported by a resource. When the resource is a machine, a dispatching rule
selects the next job to be processed among the jobs that are waiting in front
of a machine group [29, 116, 240]. When the resource is given by a vehicle, the
job is selected among the jobs that wait to be transported by the available
vehicle. Note that this is a resource-based point of view, i.e., the resulting
dispatching rules are resource-initiated. On the other hand, job-initiated dis-
patching rules are also possible. In this situation, jobs seek resources with
free capacity. This might be important when no job is queueing in front of
several available resources and a new job arrives. In this chapter, we focus on
resource-initiated dispatching rules because they are more important during
heavy material flow.

Dispatching rules are generally myopic in time and space, and it may be
difficult to know how and when to adapt them to different situations on the
shop floor. However, their decision logic is easy to understand, and they can
be implemented with less effort on the shop floor of a wafer fab. Dispatching
rules are still the main production control ingredients in many wafer fabs as
indicated by Pfund et al. [234] and Sarin et al. [274].

A dispatching rule ranks all the waiting jobs according to an index

I j(a1, . . . ,ak) := f (a1, . . . ,ak), (4.1)

where j denotes the job and ai, i = 1, . . . ,k are attributes that determine the
priority of j. They can be related to j or to properties of the BS or the BP.
The right-hand side of expression (4.1) is a function f : IRk → IR. Often, the
indication of all attributes will be suppressed, and only some of the attributes
appear on the left-hand side of the priority index. We always assume that the
job with either the largest or the smallest value of I j(a1, . . . ,ak) is selected as
the job that will be processed or transported next. Based on the number and
the nature of the attributes and the form of f , we can develop a taxonomy
of dispatching rules.

Simple rules use only one to three attributes to determine the value of the
priority index, i.e., k ≤ 3. Note that the value k ≤ 3 is somewhat arbitrary
as the division between simple and composite dispatching rules. The func-
tion f often has the form f (a1) := a1, f (a1) := 1/a1, f (a1,a2) := a1/a2, or
f (a1,a2) := a1−a2. Composite dispatching rules are based on more than three
attributes, i.e., k > 3. At the same time, the form of f is usually more compli-
cated in case of composite dispatching rules; exponentiation, summation, or
multiplication are often used. Composite dispatching rules combine several
simple dispatching rules together.

A second way of classifying dispatching rules is according to the
information on which they are based. A local dispatching rule uses only in-
formation that is related to the resource for which the jobs are in queue.
On the other hand, a global rule is based on information regarding other re-
sources. Somewhat related to global rules are look-ahead rules because they
take future job arrivals from upstream machine groups into account.

4.1 Motivation and Taxonomy of Dispatching Rules 67

A third way to classify dispatching rules is to make a distinction on whether
the value of the priority index is time-dependent or not. Dynamic rules are
time-dependent, i.e., the current time is an attribute in the priority index,
while static rules are not time-dependent.

Besides the types of dispatching rules above, more complex dispatching
rules can be constructed using truncation, conditioning, and multilevel ap-
proaches. Truncating a dispatching rule refers to the situation where jobs are
selected according to a certain dispatching rule, excepting the case where a
certain condition is not fulfilled any longer for the jobs. For example, a dis-
patching rule is used to choose the job to be processed next until at least one
job has waited no longer than a specified time. Conditioning implies changing
rules according to the BS and the BP state. One might switch back and forth,
for example, between two different dispatching rules based on some measure
of BS and BP congestion. Multilevel rules may be used to apply tie-breaking
or secondary criteria; for example, one might first select the jobs with a small
value according to a certain criterion and then use a second dispatching rule
to select the job to be processed next among this subgroup of jobs.

In this chapter, we differentiate between simple and composite dispatching
rules. We will discuss batching rules because of their practical relevance in
wafer fabs. Look-ahead rules are discussed, due to the fact that they are
important because of batching- and setup-related decisions.

Usually, discrete-event simulation is used to predict/assess the
performance of dispatching approaches in semiconductor manufacturing.
Each simulation tool owns a number of built-in dispatching rules. Often,
new dispatching rules can be added by means of customizing the simulation
tool. It is pointed out by Fowler et al. [87] that comprehensive testing of
previously developed flow control approaches in realistic settings is needed.
Finally, it is stated in [51, 307] that contradictory results with respect to
the performance of dispatching rules are common in complex job shops. It is
pointed out by Geiger et al. [96] that the only general conclusion from many
years of research on dispatching rules is that there is no dispatching rule that
outperforms consistently all the other rules under a variety of BS and BP
conditions and performance measures.

We will see in Chap. 5 that dispatching rules can also be used to make sche-
duling decisions in the list scheduling framework. For some specific situations,
even the application of simple dispatching rules within a list scheduling ap-
proach leads to the optimal solution. The main idea of this framework consists
in applying dispatching in a repeated manner. Hence, a solid knowledge of
dispatching rules is also beneficial for scheduling.

There is some relationship between dispatching and order release schemes.
We will see in Chap. 6 that many papers support the thesis that when order
release approaches become more effective, dispatching decisions will have a
diminishing effect on the BS performance.

68 4 Dispatching Approaches

4.2 Simple Dispatching Rules

In this section, we differentiate between dispatching rules for selecting the
next job to be processed on an available machine and to find the next job to
be transported by an available vehicle.

4.2.1 JS-Related Dispatching Rules

The FIFO dispatching rule is a popular example of a simple dispatching rule.
The corresponding priority index is given by

I j := r j. (4.2)

The job with the smallest index is selected next. The FIFO rule is included
as a default rule in virtually all discrete-event simulation packages. Another
important example is given by the earliest due date (EDD) dispatching rule.
Its priority index is as follows:

I j := d j. (4.3)

EDD selects the job that has the smallest due date. The intention of the
EDD rule is to ensure a high on-time delivery performance. Similar to FIFO,
EDD is included in most simulation packages. A variant of the EDD rule is
the operational due date (ODD) dispatching rule, where the due date of the
job is simply replaced by a process step-specific due date d jk for each process
step k of job j. These local due dates for the process steps can be obtained
from the due dates of the corresponding job by:

d jk := d j −FF
n j

∑
h=k+1

p jh, (4.4)

where FF ≥ 1 is a constant that is called flow factor, p jh is the processing
time of operation h of j, and n j denotes the number of process steps of job j.

Another important rule is the shortest processing time (SPT) dispatching
rule. The corresponding index is

I j := 1/p j, (4.5)

where p j is the processing time of the current process step of job j. This
dispatching rule was originally proposed for operating systems where the goal
is to keep the number of jobs waiting for a processor as small as possible. It
is well known that the SPT rule leads to small CT values in certain types of
manufacturing systems because jobs with a small processing time will always
be selected first. The application of this rule, a truncation variant of it, and a
conditioning variant of SPT for wafer fabs is studied by Rose [267]. It turns
out that SPT-type rules do not regularly reduce the ACT value, i.e., for
some products this value increases, for some it decreases, and for most of

4.2 Simple Dispatching Rules 69

the products there is no effect. This behavior is caused by the fact that the
coefficient of variation of the processing time of the operations is smaller than
one for most of the machine groups of a wafer fab, i.e., the processing times
of the operations are very similar. Hence, it is hard to predict changes in the
CT values in wafer fabs using SPT. Note that the longest processing time
(LPT) dispatching rule defined by the index

I j := p j (4.6)

is of course the opposite to the SPT dispatching rule, i.e., the job with the
largest processing time is selected first.

Jobs typically are classified in a wafer fab into regular jobs and hot jobs
(cf. Sect. 2.2.3). As a result of this classification, different weights can be
assigned to the jobs. The highest value first (HVF) dispatching rule selects a
job with the highest weight first. The corresponding index of job j is given by

I j := wj. (4.7)

When wj = 1 for all regular jobs, the FIFO dispatching rule is often used as
a tie breaker.

A generalization of the SPT rule that incorporates the weights wj of the
jobs is the weighted shortest processing time (WSPT) dispatching rule with
index:

I j := wj/p j. (4.8)

The shortest remaining processing time (SRPT) dispatching rule works
towards the selection of jobs that have only a small number of operations
to be completed. Its priority index is given by the expression

I j :=
n j

∑
k=l

p jk. (4.9)

Totally, n j − l + 1 process steps are necessary to complete job j, i.e., process
step l is the current one.

Next, we discuss an example of a dispatching rule that results in good
machine utilization and workload balance between the downstream machine
groups. It is the fewest lots in the next queue (FLNQ) dispatching rule. This
dispatching rule prioritizes jobs with the objective of balancing the workload
on different machines. This is accomplished by prioritizing jobs heading to the
next operation with the least number of jobs in its queue. The corresponding
priority index is given by

I j(t) := n(j), (4.10)

where we assume that k is the current process step of job j. Then we denote by
n(j) the number of jobs waiting in front of the machine group that corresponds

70 4 Dispatching Approaches

to the next process step k+1 of j. FLNQ-type dispatching rules typically have
poor performance in on-time delivery measures like TWT or flow time-related
measures like ACT.

The least setup cost (LSC) dispatching rule selects the job to be pro-
cessed next whose operation requires the smallest setup time among the jobs
queueing in front of the machine group. The corresponding priority index is
given by

I j := sk j , (4.11)

where we denote by sk j the setup time that is needed to process j given that
job k was the most recent job processed on the machine. Therefore, the LSC
rule is a setup avoidance rule, i.e., when there are jobs that require the current
setup state on the machine, then these jobs are selected among the queued
jobs. This is a dispatching rule commonly used by many practitioners for
dispatching and scheduling problems with sequence-dependent setup times.
Whenever there is a job and a machine available, the LSC rule searches for
the machine/job combination that causes the least setup time and selects
this job to be processed on that machine. When a job is available and the
amount of setup between two or more available machines is the same, one
will be selected randomly. However, one could also use other tie breakers.
We will later see in Sect. 4.3.2 how this rule is used to construct composite
dispatching rules.

The flow control (FC) dispatching rule is somewhat similar to the FLNQ
rule. The FC dispatching rule calculates the number of remaining production
hours per machine for the next machine group in the product’s route. More
formally, the corresponding index is given by

I j :=
m

∑l∈J(M) pl
, (4.12)

where we again assume that k is the current process step of j. The quantity
m is the number of machines in the machine group M that corresponds to the
next process step k+1. Finally, we sum up the processing times pl of all jobs
queueing in front of this machine group. This job set is denoted by J(M).

While the dispatching rules discussed so far are general purpose rules, we
now discuss an important class of simple dispatching rules for wafer fabs.
As defined by Lu et al. [169], fluctuation smoothing policies are a subclass of
the least slack (LS) dispatching rule. Known as minimum slack (MS), these
dispatching rules give the highest priority to those jobs where the slack is the
smallest. The slack of job j that is in buffer bi is defined by

s(j) := β (j)− γi, (4.13)

where β (j) is the real number attribute of j that is associated with j when
it enters the wafer fab. Furthermore, the buffer bi is associated with the real
number γi. Of course, we set again

4.2 Simple Dispatching Rules 71

I j := s(j) (4.14)

for the resulting index. We will see that different dispatching rules can be
obtained from expression (4.13) using particular choices for β (j) and γi.
Among them, there are fluctuation smoothing policies. These policies are
used to reduce the mean and standard deviation of CT. This is important
because by reducing ACT, the product can get to market faster and can keep
up with the changing environments associated with semiconductor manufac-
turing. Also by reducing the Var(CT) value (see Sect. 3.3.1), companies can
predict the completion time of a product much more accurately.

The first fluctuation smoothing policy is a policy for reducing the Var(L)
value. It evaluates the slack of a job and lets the one with the least slack
process on the available machine first. In this situation, the slack is defined
by setting β (j) := d j and γi := ξi, where ξi is an estimate for the remaining CT
of j at the process step that is associated with bi. Then the quantity d j−ξi−t,
where t is the current time, is a measure for the urgency of job j. Because
all the jobs queueing in buffer bi have the current time t as a common term,
it can be ignored, and consequently it is enough to consider d j − ξi as slack.
This rule is also known as the LS dispatching rule. In this situation, we use
the crude estimate ξi := ∑

n j
k=l p jk for the remaining processing time of job j in

the wafer fab to obtain the classical global LS rule. Note that the dispatching
rule based on index (4.14) attempts to make each job equally late or equally
early. The Var(L) value is small when all jobs are either equally too early
or too late. Therefore, the resulting dispatching rule is called the fluctuation
smoothing for variance of lateness (FSVL) policy (see Lu et al. [169]).

The second fluctuation smoothing policy is used to reduce the Var(CT)
value. Therefore, we call the resulting policy FSVCT. It also evaluates the
slack of a job and places the job with the least slack on the machine that is
associated with buffer bi next. The slack for this rule is defined by setting
β (j) := r j and again γi := ξi. This is of course a CT-related measure. Hence,
FSVCT attempts to reduce the Var(CT) by a similar argumentation as for
the FSVL policy.

The third fluctuation smoothing policy is intended to reduce the ACT
value. The resulting dispatching rule is called fluctuation smoothing for mean
cycle time (FSMCT) policy. It is known from queueing theory (cf. the de-
scription in Sect. 3.2.7 and the Kingman approximation) that the delay of
jobs at a server is caused by the burstiness of the job arrivals and the varia-
tions in the service time. We cannot influence the service times. Because of
this, following Lu et al. [169], we are interested in simultaneously reducing
the burstiness of arrivals to all the buffers of the wafer fab. The resulting
policy is therefore appropriate for reducing the ACT value.

We start by describing how we reduce the burstiness in the arrivals to
buffer bk+1. The basic idea is to set periodic due dates for jobs to reach bk+1.
We denote by λ the mean release rate for the wafer fab. Hence, the mean
inter-arrival time between jobs is given by 1/λ . Therefore, we set n/λ as the

72 4 Dispatching Approaches

due date to reach bk+1 of the nth job that is released into the wafer fab. When
we are able to reduce the variance of lateness Var(L) for reaching bk+1, we
obtain an arrival stream at bk+1 that is almost deterministic and therefore
not bursty.

In order to reduce Var(L) for reaching bk+1, we consider bk+1 as the final
sink of the wafer fab and use FSVL with respect to this system. We define
by ξ k

i an estimate for the remaining partial CT to go from bi to bk+1. In this
situation, we define β (j) := n/λ , where n is the nth job released into the wafer
fab and γi := ξ k

i . Of course, we have

ξ k
i = ξi − ξk+1, (4.15)

and therefore γi = ξi − ξk+1. But because we consider a fixed bk+1, the sum-
mand ξk+1 is common for all jobs at the buffers bi, i = 1, . . . ,k and can be
omitted. Therefore, we use

s(j) = n/λ − ξi. (4.16)

The expression (4.16) is so far only defined for jobs in buffers bi, i ≤ k. Because
we are interested in simultaneously reducing the burstiness of job arrivals at
all buffers, we extend expression (4.16) to all buffers.

However, it is important to come up with appropriate ξi values in
expression (4.16). It is discovered in Lu et al. [169] that iterative simula-
tion is quite effective to solve this problem. As described in Sect. 3.2.8, the

initial value ξ (0)
i ≡ 0 is used within the first simulation run. We obtain esti-

mates ξ̂i
(0)

from the first simulation run for the CT of the remaining process

steps that are associated with bi. The new setting ξ (1)
i := ξ̃i

(0)
is used in the

second simulation. This procedure is repeated in an iterative manner until the

difference between two consecutive ξ̂i
(s)

and ξ̂i
(s+1)

values is small. We refer
to Sect. 4.7.2 where more implementation details for a similar problem are
presented.

Finally, we refer to Sarin et al. [274] for a more complete description of
various simple dispatching rules used in wafer fabs.

4.2.2 MS-Related Dispatching Rules

In this section, we describe how the next job is selected to be transported
by a vehicle. As in the case of JS-related dispatching rules, we specify the
corresponding dispatching rules by priority indices. In MS-related dispatching
rules, we assume that a given set of transportation jobs is waiting to be
transported. For simplicity reasons, we assume that each transportation job
consists of one job that is to be processed within a wafer fab, usually a FOUP.
Performance measures of interest for AMHS are the number of carrier moves,
i.e., TP and CDT (see Sect. 3.3.1).

4.2 Simple Dispatching Rules 73

The nearest job first (NJF) dispatching rule is an intuitive greedy heuristic
that is defined as follows. An empty vehicle is dispatched to the job whose
waiting point is the nearest to the current location of the empty vehicle c.
The following index is used to assess job j:

I j := d(j,c), (4.17)

where d(j,c) denotes the length of the shortest path between j and c. The job
with the smallest index will be selected. It is clear that NJF can lead to high
effective utilization of the AMHS, i.e., loaded travel. However, this rule does
not take into account the waiting time of jobs for an empty vehicle. Therefore,
there is the possibility that some jobs wait a long time for a transport, i.e.,
the variance of CDT is large. Another limitation of NJF is that this rule
becomes inefficient in situations when there are several vehicles available to
transport jobs, but they are being blocked by the first vehicle (cf. Liao and
Fu [161]).

The first limitation of the NJF dispatching rule is resolved by the longest
waiting time (LWT) dispatching rule. It dispatches an empty vehicle c to
the job with the LWT among the jobs that are ready for transportation.
The corresponding priority index is given by:

I j := wt j, (4.18)

where we denote by wt j the waiting time of job j for transportation. The
job with the largest index is selected next. It is clear that the LWT rule
is similar to the FIFO dispatching rule for the BS. Of course, the LWT
rule tends to reduce the variation of CDT at the expense of effective vehicle
utilization. The second limitation of the NJF rule is considered within the
design of the farthest job first (FJF) dispatching rule. Blocking effects can
be avoided by dispatching an empty vehicle to the farthest job away from
it. The corresponding index is given by expression (4.17). However, we select
the job with the largest value of the index in this situation.

The modified nearest job first (MNJF) dispatching is proposed by Liao and
Fu [161] to combine the advantage of the NJF and the LWT rule. The rule
works as follows. An empty vehicle is dispatched to the job with the longest
waiting time, when this time is longer than a threshold value τ. When the set
of those jobs is empty, the NJF dispatching rule is applied to determine the
job that is selected next. The MNJF rule is a truncation dispatching rule.

The results of simulation experiments provided in [161] show that NJF
performs well with respect to TP and average delivery time. But at the same
time, the variation in CDT is large when NJF is used. The performance of
the MNJF rule, however, is very close to that of NJF, but the CDT variation
is much smaller because of the truncation strategy.

Dispatching rules for AMHS that take hot jobs into account are proposed
by Liao and Wang [162]. These rules allow for an almost no-wait transport of
these high-priority jobs. Additional job-initiated dispatching rules for the MS

74 4 Dispatching Approaches

are described by Lin et al. [163]. Note that in addition to location and waiting
time-related attributes, attributes that take the situation at the different
buffers associated with an AMHS into account can be used.

4.3 Composite Dispatching Rules

In this section, we discuss two classes of JS-related composite dispatching
rules and one MS-related composite dispatching rule.

4.3.1 Critical Ratio Dispatching Rules

We start with the critical ratio (CR) dispatching rule. It is defined as the ratio
of EDD- and SRPT-type rules. Its priority index is given by the following
expression:

I j(t) :=
d j − t

∑
n j
k=l p jk

, (4.19)

where l denotes the current process step of j. The job with the smallest CR
index is selected first because in this situation, d j − t is small relative to the
remaining processing time, i.e., the job is already late or has only a small
amount of slack. Note that the priority index given by expression (4.19) is
negative when t > d j. In this situation, the job is already late, as its due
date has passed. When 0 ≤ I j(t)≤ 1, then the job j will most likely be late.
Finally, an on-time job will have a critical ratio not smaller than one. A small
value for ∑

n j
k=l p jk often means that only a small number of process steps to be

performed are left. Of course, the numerator d j − t in expression (4.19) can

be replaced by d j −∑
n j
k=l p jk − t. However, this leads to the constant term 1 in

the priority index value of all jobs and can therefore be omitted. Sometimes,
the following dispatching rule

I j(t) =:

{
(d j − t)/∑

n j
k=l p jk, if t ≤ d j

1/((t − d j)∑
n j
k=l p jk), otherwise

(4.20)

is also referred to as the CR rule (see Rose [268]). This rule is an example of
a conditioning dispatching rule. When d j ≥ t, then a priority index similar to
index (4.19) is used, whereas in the case of d j < t, a large value for t −d j and

a large value for ∑
n j
k=l p jk, i.e., a job that is already late has to perform many

process steps, lead to a small value of the priority index.
Results of simulation experiments with CR-type dispatching rules can be

found in Rose [268]. This study shows that an appropriate due date setting has
a large impact on the performance of CR-type dispatching rules. It is shown
that in the case of rather tight due dates, CR-type rules do not perform well
with respect to on-time delivery performance and CT.

4.3 Composite Dispatching Rules 75

4.3.2 ATC-Type Dispatching Rules

The apparent tardiness cost (ATC) dispatching rule is proposed by
Vepsalainen and Morton [311]. It attempts to reduce TWT values. It is a
composite dispatching rule that blends the WSPT and the LS dispatching
rules. Its priority index is given by

I j(t) :=
wj

p j
exp

{
− (d j − p j − t)+

κ p̄

}
, (4.21)

where p̄ is the average processing time of the jobs that are queueing in front
of the machine group, t is the time where the next machine becomes avail-
able, and finally κ is a scaling parameter that weighs the slack against the
WSPT priority index. We use the notation x+ := max(x,0) for abbreviation.
The κ parameter is called the look-ahead (or scaling) parameter. Note that
there is an implicit scaling parameter 1 on the WSPT term. It is well known
that the performance of ATC-type dispatching rules strongly depends on an
appropriate setting of the κ parameter.

As ATC-type rules are found to be sensitive to the κ value setting, ten
different κ values from 0.5 to 5 in increments of 0.5 are used by Mehta and
Uzsoy [180]. This approach is called grid search in Pfund et al. [236]. For a
particular situation, i.e., a certain number of jobs waiting for processing, the
ATC rule is used independently for each κ value, the TWT value is calculated
for all queueing jobs, and finally the κ value is chosen that provides the
smallest TWT value. The κ value chosen is then fixed for a given job set
within ATC-type dispatching rules.

Various rules for the selection of this parameter are discussed in
Pinedo [240]. The tightness of the due dates, the range of the due dates
of the jobs queueing in front of the machine group, and the number of jobs
per machine can be used to determine the look-ahead parameter. A heuristic
curve-fitting method is used to determine the equations for calculating proper
values of the look-ahead parameters. Neural networks are proposed by Kim
et al. [140] to find appropriate look-ahead parameters.

There are generalizations of the ATC dispatching rule with respect to
sequence-dependent setup times and unequal ready times of the jobs. We con-
sider first the case of sequence-dependent setup times. Because we often have
to deal with sequence-dependent setup times, an extension of the ATC dis-
patching rule to this situation is proposed by Lee and Pinedo [159]. This
dispatching rule combines the WSPT dispatching rule, the LS rule, and the
LSC rule into a single priority index. The corresponding priority index of job
j at time t when job l is processed is given by

I j(t, l) :=
wj

p j
exp

{
− (d j − p j − t)+

κ1 p̄

}
exp

{
− sl j

κ2s̄

}
, (4.22)

76 4 Dispatching Approaches

where sl j denotes the setup time that is required to process job j immediately
after job l. The average setup time of the waiting jobs is denoted by s̄. This
dispatching rule is called ATC with setups (ATCS) for abbreviation. Different
expressions to determine appropriate values for κ1 and κ2 based on attribute
values of the waiting jobs are proposed by Lee and Pinedo [159]. Neural
networks are used for the same purpose in Park et al. [229]. Chen et al. [45]
develop a four-phase method to determine a set of scaling parameter values
that perform well over a wide range of problem instances, i.e. provide robust
performance. In the first phase, factor ranges that characterize the problem
instances in each machine group are calculated. In the second phase, a face-
centered cube design is used to decide the placement of design points in the
factor region. The third phase involves adding an explicit scaling factor for
the WSPT term and then using designed experiments to find good scaling
parameter values at each design point. In the last phase, the central point of
the area in which all of the good scaling parameters lie is identified with the
robust scaling parameter.

In the case of unequal ready times, it makes sense to wait for a future
job arrival in some situations. The resultant dispatching rule is called ATCR,
and the corresponding priority index is given by

I j(t) :=
wj

p j
exp

{
− (d j − p j − t)+

κ1 p̄

}
exp

{
− (r j − t)+

κ2 p̄

}
, (4.23)

where κ1 and κ2 denote the look-ahead parameters for the slack- and the
ready-time-related terms of the priority index, respectively. The slack-related
term can be motivated in a similar way as in the ATC priority index (4.21)
without ready times, while the ready-time-related term is responsible for
reducing the job priority when a job is not ready at t. Results of computational
experiments for an approach based on inductive decision trees to select the
two look-ahead parameters are presented by Zimmermann et al. [332].

The index (4.22) is extended by Pfund et al. [236] to the situation where
ready times of the jobs occur. The resulting priority index is called ATCSR.
It is given by

I j(t, l) :=
wj

p j
exp

{
− (d j − p j −max(r j , t))

+

κ1 p̄

}
exp

{
− sl j

κ2s̄
− (r j − t)+

κ3 p̄

}
. (4.24)

A grid search approach is used to determine appropriate (κ1,κ2,κ3) triples.
Furthermore, regression-based approaches are proposed for the same problem.
Note that it is also possible to use more sophisticated approaches to calculate
the slack of a job within priority indices of ATC-type rules.

Usually, ATC-type dispatching rules lead to small TWT values. How-
ever, there is some effort required to find appropriate look-ahead parameters.
The results of extensive simulation experiments with different composite dis-
patching rules in wafer fabs are presented by Bahaji and Kuhl [16].

4.3 Composite Dispatching Rules 77

4.3.3 Composite Dispatching Rules for the MS

Following Jeong and Randhawa [128], we present a dispatching rule for
vehicles that combines several attributes to achieve multiple performance
measures simultaneously. We assume that each machine has an input buffer
and an output buffer. The corresponding priority index is given as follows:

I j := α1D j +α2IQ j +α3OQ j, (4.25)

where D j is the unloaded travel distance of an idle vehicle to job j, IQ j is the
remaining space in the input buffer of a machine that is the destination of j,
and OQ j is the remaining space in the outgoing buffer of a machine that is
the source of j. The quantity D j is defined as follows:

D j :=

{
maxdk−d j

maxdk−mindk
, if maxdk �= mindk

1, otherwise
, (4.26)

where dk is the distance of the current location of the available vehicle to the
machine where job k is in the output buffer. The quantity IQ j is given by

IQ j := 1− niq
j /ciq

j , (4.27)

where niq
j is the number of jobs in the current input queue of the machine

that is the destination of j. The quantity ciq
j represents the capacity of the

incoming buffer for the machine to which job j, which is the first job in the
output buffer of a machine, is going to move. Finally, the quantity OQ j is
given by

OQ j := noq
j /coq

j , (4.28)

where we denote by noq
j the current number of jobs in the output buffer of

the machine that contains j, and coq
j is the capacity of this output buffer.

The first part of the rule prioritizes the job that is the closest to the newly
available empty vehicle, while the second part tends to prefer jobs that are
going to machines that have a low queue size in their input buffers. The third
part prefers jobs in the output buffers of machines that have a large queue
length of the outgoing buffer. Furthermore, the three parts of dispatching
rule (4.25) are weighted by using αi ≥ 0 and α1 +α2+α3 = 1. A large value of
the first part leads to a high utilization of the AMHS, whereas a large value
for the second part leads to a decreased value of carrier waiting time because
a destination machine whose input buffer is full is not able to accept another
job unless the queue is cleared. The third part reduces the probability of
machine blocking.

Note that JS- and MS-related dispatching rules are generally considered
separately. There are only a few papers that treat them simultaneously
(cf. Tyan et al. [300], for example).

78 4 Dispatching Approaches

4.4 Simulation Results for Assessing Dispatching Rules

We describe the results of a simulation study due to Bullock et al. [37] using
the MIMAC 1 model [83] and the FIFO, EDD, SPT, ATCS, FSVL, FSVCT,
and the FSMCT dispatching rules. The ATCS dispatching rule is applied only
for the steppers. For the remaining machines, the FIFO dispatching rule is
used in this situation. The model contains two products, 83 machine groups,
and 32 operators. Reentrant flows and rework are contained in the model.
Other characteristics of the MIMAC 1 model are shown in Table 4.1.

Table 4.1: Characteristics of the MIMAC 1 model

Product Weight Wafers Release size Constant time Raw
per job (in jobs) until next release processing

(hours) time (days)

1 1 48 1 3.034 13.1
2 5 48 1 6.048 14.9

We consider the performance measures ACT, Var(CT), Var(L), TP, AT,
and finally TWT. The simulation time is three years. The first year is trun-
cated to eliminate the initialization bias. Because due dates are not included
in the MIMAC 1 model, we set due dates according to

d j := r j +
n j

∑
k=1

p jk. (4.29)

Ten independent replications of each simulation run are performed to ob-
tain statistically reasonable results. The results of simulation experiments
are shown in Table 4.2.

Table 4.2: Simulation results for different dispatching rules

Rule ACT Var(CT) TP AT Var(L) TWT
(days) (jobs) (days) (days)

FIFO 38.09 13.67 5,723 24.41 28.63 452,679.10
EDD 25.66 0.15 5,823 11.98 0.26 238,774.59
SPT 25.62 0.03 5,830 11.94 0.30 253,631.29
ATCS 29.34 3.65 5,813 15.66 11.14 189,516.95
FSVL 26.08 0.19 5,827 12.40 0.34 256,435.18
FSVCT 26.53 0.04 5,832 12.85 0.15 275,690.00
FSMCT 25.74 0.04 5,837 12.06 0.07 250,554.04

4.5 Batching Rules 79

It turns out that FIFO is outperformed by the remaining dispatching rules
with respect to all performance measures because it does not take into account
any of the attributes of the jobs except the ready time. The SPT rule performs
best with respect to CT and Var(CT). The different fluctuation smoothing
policies perform well with respect to Var(CT) and Var(L). As expected, the
ATCS dispatching rule outperforms the other rules with respect to TWT,
followed by the EDD rule. It is interesting to note that the ATCS rule does
not perform well with respect to AT. This can be explained by the fact that
this dispatching rule takes the weights of the jobs into account. Only the
FIFO rule performs worse.

Related simulation experiments for larger wafer fabs can be found in
Mittler and Schömig [186, 187]. The fluctuation smoothing policies especially
show a similar behavior in the case of large-scale models. Simulation results
for ATC-type dispatching rules in large-scale wafer fabs are presented by
Mönch and Zimmermann [200].

4.5 Batching Rules

In this section, we only consider the case of parallel batching, i.e., several
jobs can be processed at the same time on the same machine. We assume
that at most B jobs can be batched together, i.e., B is the maximum batch
size. We note that it is possible to make batch formation decisions based on
the number of wafers instead of the number of jobs, but in this monograph,
all decisions are based on the number of jobs. The set of jobs that can be
used to form a batch is called a family as described for diffusion furnaces in
Sect. 2.2.3. We assume that we have f incompatible job families.

Batching rules can be seen as a generalization of dispatching rules, i.e., we
have B = 1 in the case of pure dispatching rules. When a batch-processing
machine becomes available, the next batch has to be formed and then selected
to be processed on this machine. Therefore, batch formation is an additional
decision when compared to a pure dispatching rule. We assume in the begin-
ning that a large number of jobs are queueing in front of the batch machine
group.

One possible way to solve this problem consists of selecting a job among
the queueing jobs using one of the dispatching rules described in Sect. 4.2
or 4.3. Then at most B− 1 additional jobs are selected according to certain
criteria among the jobs that are queueing in front of the batch machine group.

The following algorithm is used to determine the batch to be processed
next, when only one priority index Ii j is used to assess all the jobs j of family i.
We assume that jobs with large Ii j are selected next to be processed within
a batch.

Batching algorithm (BA)

1. Sort all the job within each family i = 1, . . . , f in nonincreasing order with
respect to Ii j.

80 4 Dispatching Approaches

2. Let us denote the length of the list that corresponds to family i by l(i).
Consider the first min(B, l(i)) jobs of each family to form batch B(i) of
family i. Denote the number of jobs within B(i) by |B(i)|.

3. Select the batch with the largest value

IB(i) :=
|B(i)|

B ∑
j∈B(i)

Ii j (4.30)

among the families i = 1, . . . , f to be processed next.

It is clear from expression (4.30) that we assess each batch by taking the sum
of the priority indices of the jobs that form the batch. The factor |B(i)|/B
makes sure that full batches are preferred compared to batches that contain
only a small number of jobs.

We consider two examples for this approach. We may use the EDD
dispatching rule to determine the most important jobs within each family.
We have to modify priority index (4.3) to Ii j :=−di j, where we denote by di j

the due date of job j of family i to align with the algorithm BA. Similarly, we
can use the ATC dispatching rule with priority index (4.21). The resulting
batching rule is called the batched ATC (BATC) rule.

Next, we study the case where not enough jobs are available to form a
full batch. In this situation, a decision has to be made whether to start the
batch that is not full or to wait until enough jobs are available. We start with
the single product case. Let L be the number of jobs in the queue in front of
the batch machine group. The resulting decision rule can be formulated as
follows.
Algorithm Minimum Batch Size (MBS)

1. Anytime there are at least S jobs in the queue with S ≤ B, then a batch
can be processed. The quantity S is called the minimum batch size.

2. When there are fewer than S jobs in the queue and a machine is available,
the machine will remain idle.

Two special cases of the MBS rule are important, namely MBSG where S = 1,
called the greedy batch policy, and thereby loading the machine every time
a new job appears; and MBSF where S = B, called the full batch policy, and
consequently not loading the machine until it can be loaded at full capacity.

The algorithm MBS has one advantage that makes it appealing to the
fab manager. It is extremely easy to implement on the shop floor. This is
because MBS requires minimal computation and real-time information to
make a decision. The MBS rule is considered as a theoretical standard that
is used to assess the performance of other batching policies. This is discussed
by Deb and Serfozo [62] who showed that with Poisson arrivals, the MBS
rule is the optimal policy among those that only consider the current status
of the BS.

However, MBS also has several disadvantages. The first drawback of
MBS is how to determine an appropriate minimum batch size prior to, and

4.6 Look-Ahead Rules 81

during, implementation. Although Gurnani et al. [111] introduce an algo-
rithm for computing the critical number S, the calculation of this value in
practice is often quite difficult considering that product mix and production
rates typically change according to business forecasts. As a result, the opti-
mal MBS will change as production changes. Another drawback of the MBS
algorithm is that it fails to consider the current state of the BS as well as
the impact of its dispatching decisions on the entire system. Thus, the MBS
batching decision may result in wasted capacity if the MBS chosen is less
than the capacity of the machine or if additional idle time is necessary to
form a batch. Ultimately, MBS provides local decisions.

Of course, it is possible to combine BA and MBS. This offers possibilities
to extend MBS to the multiproduct situation. In this case, we apply MBS to
the families where |B(i)| < B. Then, we apply the index (4.30) to assess the
batches formed for the families that can offer a batch to be processed next.

It is a weakness of the algorithms BA, MBS, and the resulting hybrids
that they consider only jobs that are available at the time when the batch
has to be formed. But it is intuitively clear that it is reasonable to exploit
knowledge of the expected state of the BS. Therefore, it sometimes makes
sense to start a non-full batch or to decide to wait for jobs that arrive in the
future to increase the fullness of batches. We will study the corresponding
look-ahead rules in Sect. 4.6.

4.6 Look-Ahead Rules

Look-ahead rules are dispatching or batching rules that take information
related to future job arrivals into account. Such information is important in
the case of sequence-dependent setup times and in the case of batch process-
ing. This kind of real-time information is available from the MES in most
wafer fabs. In the first case, information with respect to future job arrivals
might avoid expensive setup changes by waiting for a job that requires the
same setup state, but it is not available now. In the latter case, in some situ-
ations, it is reasonable to wait for future job arrivals to increase the fullness
of a certain batch. In the remainder of this section, we discuss a rule that dy-
namically selects the batch size and a rule that makes decisions based on the
next arrival of jobs. Additional look-ahead research is also briefly discussed.
Finally, we describe batching rules that are generalizations of the algorithm
BA using ATC-type heuristics.

4.6.1 Dynamic Batching Heuristic

One possibility for improving the MBS rule is to make more intelligent
decisions on batching and possibly wasting less capacity. This can be ac-
complished by using real-time information to gain knowledge about future

82 4 Dispatching Approaches

states of the BS. As a result, Glassey and Weng [101] introduce the dynamic
batching heuristic (DBH), a heuristic that incorporates real-time data into
the decision process.

DBH dynamically determines the batch size of the batch to be formed and
processed next based on the BS status at time t0 and whether idle time to
wait for additional jobs should be inserted to minimize total overall delay
at the batch machine. It is shown in [101] that the look-ahead procedure of
DBH is beneficial with respect to average delay at the batch machine, i.e.,
the average waiting time of the jobs in queue.

In order to sketch the main idea of DBH, we introduce the following
additional notation:

t0 : time epoch that the batch machine is idle and the number of jobs in
the queue is positive

t j : arriving epoch of the next jth job after t0
q : number of jobs in queue at t0
T : processing time
L : look-ahead number, where we assume that the next L arrival epochs

are known with certainty at t0

DBH is proposed for a single batch machine and a single product. The DBH
formulation is based on the following two insights:

1. The time of loading the batch-processing machine is either the time that
it becomes idle and there are jobs waiting or, if it has been idle, at the
time when some job arrives.

2. The batch machine starts service right away, when q≥ B. Waiting will only
result in more delay under such circumstances.

Since it becomes difficult to predict the later arrivals in a long planning
horizon, the DBH is proposed for operating the batch machine in a planning
horizon that is equal to the processing time T of the product. This situation
is shown in Fig. 4.1. The overall heuristic can be summarized as follows.
Algorithm DBH

1. If the batch machine becomes idle, we have to differentiate two cases.
In the first case, i.e., when jobs are in the queue, go to step 2. Otherwise,
if the queue is empty, go to step 3.

2. Let t0 be the time epoch that the batch machine becomes idle. Start the
decision heuristic described below.

3. Wait until a job arrives. Let t0 be its arrival epoch. Start the decision
heuristic described below.

We now describe the decision heuristic used in the DBH algorithm.We assume
q < B because otherwise we will always start processing a full batch. When
the q jobs available at time t0 are processed immediately at time t0, the other
jobs arriving at t j, where t j < t0 +T , will stay in queue at least T + t0 − t j.
On the other hand, when we wait for j job arrivals and then load q+ j jobs
at time epoch t j, then each queued job has to wait t j−t0 time units. Therefore,

4.6 Look-Ahead Rules 83

Number of
Jobs in Queue

tt0 t4 t5t3t1 t2

B

T

q

Figure 4.1: Arrival of jobs in the queue of a batch machine over time

the total delay will increase by (t j − t0)q. The job that arrives at t j will be
processed immediately. Therefore, the delay will be decreased by (T + t0− t j) j
because the j jobs that arrived after t0 will be processed and not have to wait
longer. Therefore, the determined net saving is

Net(t j) = (T + t0 − t j) j− (t j − t0)q. (4.31)

When Net(t j)> 0, then the delay can be reduced by waiting until t j to start
the batch. In contrast, when Net(t j) < 0, then the corresponding delay is
increased. In case of Net(t j) = 0, there is no gain or loss. Therefore, it is
reasonable to wait until ti, where i is given by

i = argmax
j

{
(T + t0 − t j) j− (t j − t0)q| 0 ≤ j ≤ jmax

}
. (4.32)

We have

j∗ := argmax
j
{t j|t j ≤ t0 +T}, (4.33)

i.e., j∗ denotes the maximum number of arrivals within T , and we define
jmax := min{ j∗,B− q,L}. Therefore, t jmax is the last possible loading epoch.
It is determined by the look-ahead number L and T . Of course, the setting
L ≤ B− 1 makes sense because of the maximum batch size of B and 1 ≤ q.

Although DBH performs better than MBS in all situations, it requires
much more computation than MBS and also requires real-time information

84 4 Dispatching Approaches

to make dispatching decisions. Likewise, the number of jobs to look ahead is
necessary before DBH can be implemented. It is also inflexible with respect
to the planning horizon length.

4.6.2 Next Arrival Control Heuristic

Half of the potential benefit in using DBH is gained by looking ahead only to
the next arrival (see Glassey and Weng [101]). This is the starting point for
the next arrival control heuristic (NACH) proposed in [84]. Fowler et al. [84]
note also that the further ahead one looks, the greater the potential impact of
the decision on arrivals that occur outside of the time horizon of T time units
as suggested by Glassey and Weng [101]. An extension of the original NACH
approach for parallel batch machines and multiple products is provided by
Fowler et al. [85].

In this monograph, we describe NACH in a slightly generalized context,
where the status of critical machines in subsequent downstream processing
is taken into account during batch processing decision-making [287]. We de-
scribe a methodology that is intended to balance the time a job spends waiting
for batching with the time spent in setup at downstream machines. The re-
sulting heuristic is called NACH-setup. We will use the following notation to
describe NACH-setup:

q j : number of jobs in queue for product j
N : total number of products
Tj : processing time of a batch of product j
S j : downstream setup required by product j given the current

status of the BS
Wj : weighted processing time for a batch of product j

TN j : time until the next arrival of a job of product j
t1 j : time of the next arrival of a job of product j

The NACH-setup logic consists of two cases. The first case, a push decision,
occurs when a batch machine is idle and a job arrives. At this point, a trade-
off similar to the one employed by DBH is made to determine if the machine
should begin processing this product now or wait for the next arrival. The
second case, a pull decision, occurs when a machine has just finished pro-
cessing and must choose whether or not to pull jobs and immediately begin
processing again. If the decision is to pull jobs, the type of product to process
must be determined.

We start by describing the push decision logic. It is similar to DBH with
L = 1. A batch loading decision is said to occur at epoch t0. If there are jobs
in queue, t0 corresponds to the time epoch that the machine becomes idle.
Otherwise, t0 corresponds to the arrival epoch of the next job. The potential
times the next load begins is specified by the number of future arrivals that
will occur before the next load begins.

If B ≤ q at time t0, then a full load is available, i.e., waiting will only result
in an increased delay. Therefore, a full load will be dispatched to the machine.

4.6 Look-Ahead Rules 85

However, if 0 < q < B, a decision must be made whether to load the machine
immediately or to wait for the next arrival. The decision of whether or not
to wait is determined by calculating the net decrease in delay, if any, caused
by waiting similar to the case of DBH. We obtain for the corresponding net
change in the delay for product j:

Δ1 j := (Tj + S j + t0 − t1 j)− (t1 j − t0)q j. (4.34)

Note that the main difference between expression (4.31) and (4.34) is the
additional setup time in the first term of expression (4.34). When Δ1 j > 0,
then the delay is reduced by waiting until t1 j to start the batch. We note that
in the case of the push logic, we have to consider only the arriving product
type in determining whether to make a batch or not. Let this product type
be denoted by j. The push decision can be formalized as follows.
Algorithm Push Decision (Push)

1. Increase the inventory of this product by one. Determine the number of
idle batch machines. Denote this value by midle. If midle = 0, then stop, i.e.,
no push decision is made at this point of time. If midle > 1, then go to step
4. If there is a full load of this product, then also go to step 4.

2. Determine the time of the next arrival of this product, i.e., find t1 j. Let t0
be the current time. If t1 j > t0 +Tj, then set t1 j := t0 +Tj.

3. Calculate Δ1 j for the product that enters the queue to determine whether
it is worth waiting for the next arrival of this product before making a
batch. If Δ1 j > 0, then stop, i.e., no push decision is made at this point of
time.

4. Start a batch of this product now on an idle batch machine. Decrease the
inventory of this product by the size of this batch.

The more complex issue, the influence of one product on another, is embedded
into the pull decision logic. Therefore, we continue by describing the pull
decision logic. A pull decision is necessary when a specific batch machine
becomes idle immediately after completing its previous batch. Again, the
benefit to wait can be expressed as Δ1 j using expression (4.34). If we have
Δ1 j > 0 for all j, then the batch machine has to wait. The pull decision can
be summarized as follows.
Algorithm Pull Decision (Pull)

1. If no jobs are waiting, then stop, i.e., no pull decision is required.
Determine the number of idle batch machines, including this batch
machine. Denote this number by midle. Determine the time of the next
batch machine completion. This time is denoted by tC. Set tC := ∞ if no
batch machines are busy. Set the selected product indicator jprod to 0.

2. If there is no full load for any product, then go to step 3.
Determine the product among those that have a full load that will cause
the weighted shortest processing time. Set jprod to that product number
and go to step 6.

86 4 Dispatching Approaches

3. Determine the next arrival time t1 j for all j. If midle > 1 or tc < t1 j, then
calculate the delay due to processing j (see Eq. (4.37)). Set jprod to that
product number of the product with the corresponding minimum value
and go to step 6.

4. Calculate Δ1 j for each j to determine whether it is worth waiting for the
next arrival of that product to appear before making a batch.
If it is worth waiting until the next arrival appears for all products, i.e., if
Δ1 j > 0 for all products, then stop. In this case, no pull decision has to be
made.
On the other hand, if it is not worth waiting until the next arrival for
any of the products, i.e., Δ1 j ≤ 0, set jprod to the product number of that
product that causes no setup time. If no products exist without setup time,
set jprod to the product number of the product with the weighted shortest
processing time and go to step 6.

5. For each product for which it is worth waiting for the next arrival, i.e.,
Δ1 j > 0, determine the total waiting time incurred by all products by
waiting for the next arrival of this product.
For each product for which it is not worth waiting for the next arrival,
determine the total waiting time incurred by all products when a batch of
this product is started now.
Determine the minimum of the above and set jprod to the product number
of the corresponding product.
If the minimum is for a product for which it is worth waiting, then stop.
In this case, no pull decision is required.

6. Start a batch of product jprod on the batch machine that just completed.
Decrease the inventory of that product by the size of the batch.

If it is determined that all products should start processing now, the algo-
rithm Pull chooses the batch that requires no setup downstream. If no such
batch can be formed, the algorithm selects a batch with the weighted short-
est processing time. It has been shown that using a WSPT scheme leads to
schedules with a minimum mean flow time (cf. Pinedo [240]). The weighted
value for each product, Wj, is defined as follows:

Wj := (Tj + S j)
N

∑
i=1,i�= j

qi, j = 1,2, . . . ,N. (4.35)

The quantity Wj represents the total delay incurred by all of the other
products at the batch machine by starting j immediately. The product with
the minimum value is selected in step 2 and step 4.

If it is found in step 5 that some products should wait and some should
begin processing, the total delay over all products as a result of waiting, DW j,
or processing, DP j, is computed as follows:

4.6 Look-Ahead Rules 87

DW j := TN j

N

∑
i=1

qi +
N

∑
i=1,i�= j

(
(Tj + S j)qi +(Tj + S j +TN j −TNi)

+
)
, j ∈ S1, (4.36)

DP j := (Tj + S j)
N

∑
i=1,i�= j

qi +
N

∑
i=1

(Tj + S j −TNi)
+, j ∈ S2. (4.37)

Recall that we set x+ := max(x,0) for abbreviation. S1 is the set of products
for which it is determined to wait, and S2 is the set of products for which it is
determined to begin processing. The minimum of these values is selected, and
the appropriate action is taken. The first term of the right side of Eq. (4.36)
determines the additional waiting time incurred by those jobs already in the
queue until the next arrival of j. The second term calculates the additional
waiting time for all other products if j begins processing at the time of its
next arrival. The (Tj + S j)qi portion is the delay for those products already
in queue, and the (Tj + S j +TN j −TNi)

+ portion is the delay (if any) for the
next arrival of the other products. The first term of the right side of Eq.
(4.37) represents the additional waiting time gained by those jobs already in
the queue, while the second term corresponds to the additional waiting time
gained by the next arrival of each product. The resultant heuristic is called
NACH-setup for abbreviation. This heuristic is very similar to the multi-
product NACH procedure proposed by Fowler et al. [85]; however, NACH
does not take setups into account.

To assess the performance of the NACH-setup heuristic, simulation
experiments are performed using the simulation engine Factory Explorer.
The first model is a three-machine system with multiple products. This sys-
tem is used to compare MBSG, MBSF, NACH, and NACH-setup in a simple
controllable environment. The three-machine system is comprised of a serial
machine, a batch machine, and another serial machine with setups. The first
machine (machine 1) is a dummy machine with infinite capacity used only
to get products into the system. The batch machine (machine 2) and the
next serial machine (machine 3) have limited capacity, only one machine
each, and parameters typical of machines used in semiconductor manufactur-
ing. The different products have identical process flows, which are shown in
Fig. 4.2.

We continue by describing the design of experiments used. Five factors
are included in the design of experiments for the simple system. The factors
are listed below:

• Number of products
• Product mix
• Traffic intensity at the batch step (machine 2)
• Traffic intensity at the setup step (machine 3)
• Dispatching policy at the batch machine

88 4 Dispatching Approaches

Job enters. Job leaves.

Infinite capacity

No batching

No Setup

Machine 1 Machine 2 Machine 3

1 Server

No Batching

Setup = 0.75

1 Server

No setup

B = 6

Figure 4.2: Three-machine system with two or four products

The input rate to the system is varied depending upon product mix and
batch step traffic intensity, and exponential inter-arrival times are assumed.
The processing time at machine 3, the machine with setup, is also varied
depending upon product mix, input rate, and traffic intensity at the setup
machine. The remainder of the system parameters for this experiment were
as follows:

• Number of wafers per job: 48 wafers
• Processing time at machine 1: 2.5 h (deterministic)
• Processing time at machine 2: 2.5 h (deterministic)
• Capacity of machine 2: B = 6 jobs
• Setup time between products: s = 0.75h

Altering the input rate to the system controls the traffic intensity at the batch
step. Changing the processing time required for each product at the setup step
controls the traffic intensity at the setup step. Notice that the experimental
range of these values is small, i.e., 0.720–0.734. This is done to examine a
range of high utilization at the setup step while avoiding an unstable system.
The full experimental design is shown in Table 4.3.

Each data point is replicated three times, each with a run length of 8,640h
and statistics cleared after 1,720h to take into account for initialization bias.
The traffic intensity at the setup step was calculated disregarding any poten-
tial setup. Figure 4.3 shows the variation in CT over the six traffic intensity
levels at the setup step for the two-product, equal-mix case.

We observe that NACH-setup outperforms all the other policies, except at
setup step traffic intensity level 1. At this point, the setup step is not limit-
ing the flow, thus dispatching based on downstream setup will likely not be
beneficial. This is supported by the fact that, as the traffic intensity level at
the setup step increases, the performance of NACH-setup compared to the
other policies is superior.

4.6 Look-Ahead Rules 89

Table 4.3: Design of experiments

Factor Level Count

Number of products 2, 4 2
Product mix Equal (50%,50%), (25%,25%,25%,25%) 2

Dominant (70%,30%), (40%,40%,10%,10%)
Traffic intensity 0.5, 0.8 2
at batch step

Traffic intensity 0.720, 0.723, 0.726 6
at setup step 0.729, 0.731, 0.734

Dispatching policy MBSG, MBSF, NACH, NACH-setup 4
Total factor combinations 192
Number of replications 3

Number of simulation runs 576

In Table 4.4, the CT values for the two-product, dominant mix case are
shown. With one product dominant over the other, the behavior of the
manufacturing system is similar to a system with one product. As expected,
because of the dominant-product mix, NACH performs best until traffic in-
tensity level 4. Once this situation is reached, the gain in CT because of the
reduced setup downstream becomes critical as the setup step begins to limit
the flow of jobs through the system. In the four-product, equal-mix case,

0

20

40

60

80

100

120

140

160

180

1 3 5

Traffic Intensity Level at Setup Machine

C
T

MBSG

MBSF

NACH

NACH - Setup

2 4 6

Figure 4.3: CT at the setup step, two products, equal mix

NACH-setup outperforms all the other policies, and, as expected because of
the additional setup due to the larger number of products, the difference
between them is more substantial. MSBF outperforms NACH because the
additional setup time favors larger batches. As in the two-product situation,
the differences in CT between the policies are reduced in the four-product,
dominant-product mix scenario, and it does not become apparent until traffic

90 4 Dispatching Approaches

intensity level 4. The detailed results for the four-product case can be found
in [287]. Additional experiments using the MIMAC 1 model are also described
in [287]. In case of a high input rate, no statistically significant difference be-
tween the four policies can be found. There is no significant difference between
MBSG, NACH, and NACH-setup in the low- and medium-input rate cases.
However, all three policies are superior to MBSF. In addition, NACH-setup
performs well for all three input rates, while the relative performance of the
others changes with respect to the different input levels.

Table 4.4: Simulation results for two products, dominant mix

Traffic intensity MBSG MBSF NACH NACH-setup
level

1 - 0.720 14.425 12.025 11.050 13.125
2 - 0.723 18.100 12.400 11.500 13.350
3 - 0.726 28.875 12.975 12.375 13.550
4 - 0.729 63.900 34.675 13.700 14.475
5 - 0.731 87.700 53.025 16.375 15.750
6 - 0.734 133.300 75.250 28.225 17.700
Average 57.717 33.558 15.538 14.658

4.6.3 Additional Look-Ahead Research

Weng and Leachman [320] address the same problem as Glassey and
Weng [101] and Fowler et al. [84]. However, their minimum cost rate (MCR)
heuristic has some noticeable differences from DBH and NACH. MCR seeks
to minimize the holding cost per unit time, which is like minimizing the
weighted (by cost) number of jobs in queue. Robinson et al. [260] present
a heuristic that is essentially a combination of NACH and MCR. The cost
rate function used in MCR is incorporated into the rolling horizon scheme
used in NACH. We refer to Robinson et al. [261] for a review and a compar-
ison of various real-time control strategies for batch machines in wafer fabs
until 2000.

Instead of calculating a threshold number of jobs in queue, Cigolini
et al. [52] determine dynamically the length of the time window in a more
recent paper. The resulting look-ahead heuristic is called wait no longer than
time (WNLTT).

Ham and Fowler [114] propose an extension of NACH. The heuristic, called
NACH+, is based on the idea that the incoming inventory into the batch
operations is controlled such that unnecessary waiting time does not happen.

4.6 Look-Ahead Rules 91

4.6.4 BATC-Type Rules

We continue with an extension of the algorithm BA described in Sect. 4.5.
Again, we assume that a batch-processing machine is available for process-
ing, and we have to determine the next batch to be processed. In contrast
to the algorithm BA, the present extension takes ready times of the jobs
into account. This kind of ready time information is typically provided by
the MES.

For this purpose, we consider a time window (t, t + Δ t), where t is the
current time. We define the set

J(i, t,Δ t) :=
{

i j|ri j ≤ t +Δ t
}
, (4.38)

where we represent job j of family i by i j. We sort the elements of J(i, t,Δ t)
with respect to the index

Ii j(t) :=
wi j

pi
exp

{
− (di j − pi− t +(ri j − t)+)+

κ p̄

}
(4.39)

in nonincreasing order, where pi is the processing time of the jobs of family i
and ri j is the ready time of job j of family i. Note that index (4.39) is similar
to index (4.24) when no setup times occur. In the next step, we select the
first thresh jobs from this list and form all the possible batches. We assess
each of these potential batches by using the batch index

Ibi(t) :=
wbi

pi
exp

{
− (dbi − pi− t +(rbi − t)+)+

κ p̄

}
nbi

B
, (4.40)

where wbi is the average weight of the nbi jobs that form the batch bi of family
i, rbi is the maximum ready time among the jobs that form the batch, and
finally dbi is the minimum due date. We summarize the algorithm as follows.
Algorithm Dynamic Batching Dispatching Heuristic (DBDH)

1. Determine the sets J(i, t,Δ t) for family i = 1, . . . , f . The quantity t is the
time where a batching machine is available for processing.

2. Sort all the jobs within each family i = 1, . . . , f in nonincreasing order with
respect to Ii j(t) given by expression (4.39).

3. The length of the list that corresponds to family i is denoted by l(i).
Consider the first min{thresh, l(i)} jobs to form potential batches. Assess
each of these batches using index Ibi(t).

4. Select the batch with the largest Ibi(t) value among the families i = 1, . . . , f
to be processed next.

Note that Δ t and thresh are parameters of DBDH that have to be selected
carefully. Large values of thresh might lead to a huge computational burden,
whereas large values for Δ t might decrease the quality of the future job arrival
information represented by ri j .

92 4 Dispatching Approaches

We continue with the presentation of the results of some computational
experiments. The MIMAC 1 model [83] is used in a slightly modified version.
This simulation model consists of two different process flows with more than
200 process steps and over 80 different machine groups.

There are 16 batch machine groups among the machine groups of the
MIMAC 1 model. Machine group OXIDE 1 is the bottleneck of the wafer
fab. Table 4.5 provides information on this particular batch machine group.
In Table 4.5, we denote by Bmin the minimum batch size in jobs and by Bmax

the maximum batch size in jobs. The processing time of the different job
families is between 135min and 1,410min. The utilization is determined by
simulation experiments with the FIFO dispatching rule.

Table 4.5: Bottleneck batching machine group information

Machine group Number of machines Bmin Bmax Utilization (%)

OXIDE 1 3 2 6 84.19

We use a slack-based dispatching rule for the non-batching machines
(cf. Sect. 4.2.1). The rule selects the job with the smallest slack for the pro-
cess step. For the calculation of the slack of the jobs waiting in front of a
certain machine group, we simply multiply the processing time by a flow fac-
tor. For that purpose, we calculate the difference between the due date of
the job and the current time as used in the LS index (4.13). Based on this
information, we assign a flow factor to each job. This scheme allows us to
determine local due dates for each single process step, i.e., future job arrival
information is available at the batch machines. We repeat the calculation of
the flow factors every 15min.

In our experiments, we consider a moderate workload in the system.
Machine TTF and TTR (see Sect. 3.2.8) are exponentially distributed.
The model is initialized using a WIP distribution of the wafer fab. The length
of a single simulation run is 100 days in our experiments. We take five in-
dependent replications of each simulation run in order to obtain statistically
meaningful results.

We continue by presenting the design of experiments used. The main
performance measures are TWT, CT, and TP. Therefore, we set due dates
according to the following expression:

d j := r j +FF
n j

∑
k=1

p jk, (4.41)

4.6 Look-Ahead Rules 93

where FF is the flow factor. Furthermore, we define weights of the jobs
according to the following two discrete distributions:

D1 :=

⎧⎨
⎩

wj = 1, p1 = 0.5
wj = 5, p2 = 0.35

wj = 10, p3 = 0.15
(4.42)

and

D2 :=

⎧⎨
⎩

wj = 1, p1 = 0.5
wj = 2, p2 = 0.45.

wj = 10, p3 = 0.05
(4.43)

D1 mimics the situation where a large number of jobs have a large weight,
whereas a large number of jobs have a medium weight in D2 and only a very
small portion of the jobs have a large weight in this situation. We summarize
the design of experiments in Table 4.6. We denote by p̄ the average processing
time of the jobs on the batch machines.

Table 4.6: Design of experiments

Factor Level Count

FF 1 2 for all the jobs, 2
2 2 for 50% of the jobs
1.5 for 50% of the jobs

w j 1 ∼ D1 2
2 ∼ D2

Δt 1 0.25p̄ 2
2 0.5p̄

Overall number of experiments 8

The look-ahead parameter κ in DBDH is selected from the grid
{0.1,0.2, . . . ,6.5}. The κ value that leads to the smallest TWT value is finally
used whenever DBDH makes a decision. Within the experiments, thresh = 15
is chosen.

The corresponding results of the DBDH-based batching strategy are shown
in Table 4.7. We use a batching scheme based on the FIFO dispatching rule
as a reference. Note that when the FIFO dispatching rule is used for batching,
Δ t does not have any impact on the decision-making. Therefore, we have to
conduct only four simulation experiments in this situation. Consequently, we
have to perform a total of 12 different simulation experiments.

We use the notation (level of factor 1—level of factor 2—level of factor 3) in
order to indicate the considered factor combinations for DBDH. All the results
in Table 4.7 are the ratios of the performance measure values of DBDH and
FIFO for the same values of the levels of the first, the second, and finally the
third factor. Low values are good for TWT and CT, while we are interested
in high values for TP.

94 4 Dispatching Approaches

Table 4.7: Computational results for DBDH

Factor combination TWT CT TP

1-1-1 0.1031 0.9685 1.0099
1-1-2 0.1191 0.9725 1.0089
1-2-1 0.0918 0.9677 1.0135
1-2-2 0.1475 0.9732 1.0056
2-1-1 0.2913 0.9631 1.0081
2-1-2 0.3035 0.9703 1.0082
2-2-1 0.4230 0.9588 1.0089
2-2-2 0.4363 0.9643 1.0085

From the results shown in Table 4.7, we can see that the algorithm DBDH
outperforms the FIFO rule at all factor settings for all performance measures.
The TWT values are sensitive to the choice of Δ t. In our experimental design,
smaller values for Δ t lead to slightly better results. Choosing a larger Δ t value
causes fuller utilized batches and a larger queue size. The machines have to
wait longer for jobs that arrive during the given time window. Therefore, this
leads to fuller batches. Hence, a careful selection of the Δ t values is important
for the performance of DBDH.

More computational results can be found in Mönch and Habenicht [194].
It is also shown, by comparison with the algorithm BA, that taking future
job arrival information into account can lead to TWT reductions.

4.7 More Sophisticated Approaches

In this section, we discuss rule-based systems, the selection of parameters of
dispatching rules using iterative simulation, the construction of appropriate
blended dispatching rules, and finally the automated discovery of dispatching
rules.

4.7.1 Rule-Based Systems

A rule-based system determines a priority value for each job or batch based
on hierarchically structured rule-based criteria systems. In a certain sense, a
rule-based dispatch system is a combination of composite, truncation, condi-
tioning, and finally multilevel dispatching rules. Powerful rule-based systems
are in use in wafer fabs (see Appleton-Day and Shao [9]).

The main ingredient of a rule-based system is a composite dispatching
rule, given by the following priority index for each job j:

I j :=
C

∑
k=1

wkck, (4.44)

4.7 More Sophisticated Approaches 95

where C is the number of first-order criteria, ck is the value of the kth
first-order criterion, and wk ≥ 0 with ∑C

k=1 wk = 1 are weights to balance
the importance of the different first-order criteria. Each ck can be further
refined by appropriate subcriteria, i.e., we consider second-order criteria
ckl , l = 1, . . . , lk, where we denote by lk the number of second-order criteria for
the first-order criterion ck. Higher-order criteria can be taken into account
by following this approach in a recursive manner. The resulting criteria hier-
archy is a tree. A set of IF-THEN rules is used to evaluate each leaf of this
tree based on certain BS- and BP-related data with a certain attribute value.
Typical attribute values are LOW, MEDIUM, LARGE, and HUGE. An at-
tribute value is assigned to each (l+1)-order criterion based on the attribute
value combination of its l-order subcriteria. By proceeding in a recursive man-
ner, a positive real number can be assigned to each first-order criterion that
is necessary to compute the left-hand side I j in expression (4.44).

Following Thiel et al. [296, 297], we introduce the following example for a
rule-based system. The rule-based system consists of the following first-order
criteria:

1. On-time delivery performance-related criterion, called on-time urgency cri-
terion

2. Setup-related criterion
3. Load-related criterion

Note that the second criterion deals with setup avoidance issues, while the
third one is related to batch formation issues. It is obvious that the second
and third criterion are TP-related and therefore in potential conflict with the
first criterion.

We show the second- and third-order subcriteria for the on-time urgency
in Fig. 4.4. The first second-order criterion measures the slack related to the
current process step of the job while the second second-order criterion is
concerned with the importance of the due date and is comprised of three
third-order criteria. The first third-order criterion considers the progress of
processing a job measured in the number of completed process steps. This
subcriterion is motivated by the fact that a potential due date violation is
less important when the number of already completed process steps is small.
The second third-order criterion takes into account whether the job is a reg-
ular or a hot job, whereas the third second-order criterion measures the im-
portance of meeting the due date of the job with respect to the type of
the customer associated with this job. Specifically, the progress of a job is
measured by

prog(j) := l j/n j, (4.45)

where l j is the current process step of j, and n j denotes the number of all
process steps of job j. We show the IF-THEN rules with respect to the
progress of the job-related subcriterion:

IF prog(j)< 1/3 THEN c121 = “LOW”

96 4 Dispatching Approaches

On-time Urgency

Delay related to Due Date Importance of the Due Date

Progress of the Job Importance of the CustomerJob Type

First-
order

Second-
order

Third-
order

Figure 4.4: Criteria hierarchy related to On-time urgency

IF 1/3 ≤ prog(j)≤ 2/3 THEN c121 = “MEDIUM”
IF 2/3 < prog(j) THEN c121 = “LARGE”

It is obvious that the values 1/3 and 2/3 are prescribed values that can
be modified to model user preferences. Because these values are arbitrary,
extensive simulation-based assessment of rule-based dispatching systems is
necessary.

4.7.2 Determining Parameters of Dispatching Rules
Based on Iterative Simulation

We continue by studying global dispatching rules that take waiting times into
account. The waiting times for process steps that have to be performed in the
future are unknown. The waiting times depend, for example, on the product
mix, on the load of the wafer fab, and on the control strategy used.

Global variants of the ATC dispatching rule are discussed by Vepsalainen
and Morton [312]. A solution is proposed that is based on iterative simulation
(cf. the discussion in Sect. 3.2.8). The method is called lead time iteration.
Based on a crude initial waiting time estimate, successive adjustments of the
waiting time are performed by using the measured waiting time from the
current simulation run. This method is also used by Ovacik and Uzsoy [223]
in order to determine appropriate internal due dates for an ODD-type dis-
patching rule in the test area of a back-end facility. A lead time iteration
scheme is used to estimate waiting time used in the FSMCT dispatching rule
in [169] (cf. the discussion in Sect. 4.2.1). We consider a global ATCS rule as

4.7 More Sophisticated Approaches 97

proposed by Vepsalainen and Morton [312]. The index has to be calculated
as follows:

I ji(t, lk) :=
wj

p ji
exp

⎧⎪⎨
⎪⎩−

(
d j − p ji − t −∑

n j
g=i+1(wt jg + p jg)

)+

κ1 p̄
− skl, ji

κ2s̄

⎫⎪⎬
⎪⎭ , (4.46)

where we assume that i is the current process step of job j. The average of
the sum of the processing times of the remaining process steps for each job
is denoted by p̄. The waiting time associated with process step k of job j is
denoted by wt jk. The quantity skl, ji is the setup time that is necessary when
process step l of job k is processed before ji. Again, κ1 and κ2 are scaling
parameters. The resulting dispatching rule is called global ATCS (GATCS).
Appropriate values for wt jk are unknown in the beginning because they are a
result of the dispatching strategy used. Therefore, we use iterative simulation
to determine them. The resulting procedure can be formulated as follows.
Algorithm Lead Time Iteration Procedure (LTIP)

1. Set l = 1. Start by an initial waiting time setting using

wt(l)jk := (FF− 1)p jk, k = i+ 1, . . . ,n j, (4.47)

where we denote by FF ≥ 1 the flow factor. Initial values for FF can be
obtained from a simulation run using the FIFO dispatching rule.

2. Dispatch the wafer fab using the GATCS dispatching rule and the waiting
time estimates for the current iteration.

3. Calculate the actual waiting time q(l)jk of each process step jk from
simulation run l. In this situation, the waiting time is defined as the time
between the completion of process step j,k−1 and the start time of process
step jk, i.e., the transportation time is included.

4. Update the waiting time estimates as follows:

wt(l+1)
jk := (1−α)wt(l)jk +αq(l)jk , k = i+ 1, . . . ,n j, (4.48)

where 0 ≤ α ≤ 1 denotes a fixed smoothing factor.

5. Terminate the procedure if the stopping condition max jk |wt(l+1)
jk −w(l)

jk |< ε
is valid; otherwise, update l := l + 1 and go to step 2. The quantity ε is a
small prescribed value.

Usually, four to eight iterations are enough to fulfill the LTIP stopping
condition for reasonable values of ε. The update scheme for the waiting times
in step 4 is an exponential smoothing-type approach. It takes the current mea-
sured waiting time from the simulation run and the estimated waiting time
from the previous iteration into account. Typical α values are 0.7 and 0.9
(see Mönch and Zimmermann [197]). Note that it is also possible to use a
more sophisticated update scheme based on double exponential smoothing.

98 4 Dispatching Approaches

The architecture described in Sect. 3.3.2 is used to implement LTIP.
The object-oriented database is used to store the waiting time for each single
process step in each iteration. It makes the waiting times persistent because
they are required in future iterations.

LTIP allows for large TWT reductions compared to a FIFO dispatching
strategy. At the same time, CT decreases and TP increases. Detailed com-
putational results for the MIMAC 1 model can be found in [197]. LTIP is
a simple but powerful technique to improve the performance of dispatching
rules.

4.7.3 Construction of Blended Dispatching Rules

We consider a blended dispatching rule for the case of l different performance
measures. Each performance measure a of interest is represented by a priority
index Ia

jis(t) ∈ [0,1] for processing job j of product i at stage s at time t.
We obtain for the weighted priority for job j of product i on stage s at time t:

Pt
jis :=

l

∑
a=1

waIa
jis(t), (4.49)

where wa ≥ 0 is the weight of performance measure a and ∑l
a=1 wa = 1 is

valid. Furthermore, it can be achieved by an appropriate transformation of
the priority indices of the jobs that the sum of all priority index values for all
the jobs of all products queued at machine group m sum up to one as shown
in the following expression:

p

∑
i=1

∑
s∈Ji(m)

nsi

∑
j=1

Ia
jis(t) = 1, (4.50)

where p is the number of different products, nsi is the number of jobs of
product i at stage s, and finally Ji(m) is the set of all stages in the process
flow of product i that require machine group m.

We have to determine appropriate values for the weights. Therefore, we
express the values of each performance measure as a mapping of the weights.
To do this, we look for a mapping:

Pa : (w1, . . . ,wl)→ IR (4.51)

for each performance measure a. Pa(w1, . . . ,wl) is called the response for the
weight setting w1, . . . ,wl . The same combined dispatching weights and rules
are used at all machine groups. However, due to the different processing
natures of non-batching and batching machines, two varying yet similar ap-
proaches are used. For a non-batching machine, the combined criterion is
calculated for each job queued in front of machine group m. In the case of a
batching machine, the only difference is that jobs are grouped together into

4.7 More Sophisticated Approaches 99

batches based on similar batching requirements, i.e., the same incompatible
job family. The combined criterion for the different jobs that form the batch
is aggregated into a single index value by adding the weighted criterion for
each job in the batch similar to algorithm BA in Sect. 4.5.

Next, we describe how the response for each objective is determined by
designed experiments using discrete-event simulation. Model parameters are
estimated most effectively when proper experimental designs are used to col-
lect the data (see Montgomery [208]). There are many experimental designs to
choose from including factorial, central composite, and D-optimal. However,
there are several assumptions that need to be made about the design and
the data for the experimental methods to be effective. One critical assump-
tion is the independence of the experimental variables. Least square methods
cause erroneous results in the model parameter estimates if this assumption
is violated.

In the situation discussed in this section, the experimental variables, i.e.,
the different wa, are not independent. The weights identify the proportional
contribution of each dispatching rule index in the overall blended priority
index. The response variables are a function of the proportions of the dif-
ferent weights. The actual value of a weight is not important, but, rather,
it is the relative size when compared with another weight that is important.
For example, in case of four criteria, the weights 0.05, 0.05, 0.15, and 0.25
are possible, or they can be 200, 200, 600, and 1,000. The same results are
obtained for each of the two weight sets because the ratios of the weights
when compared to each other are the same for each set. Both sets of weights
can be normalized to 0.1, 0.1, 0.3, and 0.5, i.e., their weight sum is one.

Due to the lack of independence of the weights, standard experimental
design strategies have to be abandoned and a mixture design chosen that
will accommodate this lack of independence. Mixture experiments address
the issue where the components of the experiment have to add to 100%.
There are several mixture designs to choose from depending on the degree
of the polynomial that the experimenter is anticipating to best fit the pro-
cess. For mixture experiments, the experimental design region is a simplex
that is a regularly sided figure with q vertices in q−1 dimensions (see Mont-
gomery [208]). Let us consider the simplex centroid design with q factors in
more detail. This design consists of 2q − 1 design points. This is the number
of vectors with q components where k components have the value 1/k for
1 ≤ k ≤ q and the remaining components are 0. An example with three dif-
ferent criteria is given in Table 4.8. Note that in Table 4.8 in addition to the
23 − 1 regular design points, three augmented points are added to give more
degrees of freedom for error lack of fit and model significance analysis.

Based on the mixture design, a response surface is constructed for each
single criterion as described in Sect. 3.2.9. Note that each design point cor-
responds to a blended dispatching rule with a certain weight setting. Simu-
lation experiments with simulation models of wafer fabs have to be carried
out to find the response values. Different analyses of variance have to be

100 4 Dispatching Approaches

Table 4.8: Simplex centroid design for a mixture experiment

Run number w1 w2 w3

1 1 0 0
2 0 1 0
3 0 0 1
4 1/2 1/2 0
5 0 1/2 1/2
6 1/2 0 1/2
7 1/3 1/3 1/3
8 2/3 1/6 1/6
9 1/6 2/3 1/6
10 1/6 1/6 2/3

performed for the different responses to determine statistically significant
factors. An individual optimum can be determined for each single Pa. How-
ever, a global optimum is desired. Therefore, a multiple response optimization
using the desirability function approach (cf. Sect. 3.3.1) is performed. The in-
dividual meta-models are transferred to a desirability function with values
between zero and one, where one is the most desirable. The corresponding
desirability function for criterion a is denoted by da. Finally, the desirabil-
ity functions are transformed into a combined objective function using the
geometric mean of the individual desirabilities as described in Sect. 3.3.1.
Optimization of the combined objective function can be accomplished us-
ing different pattern search algorithms such as the algorithm of Hooke and
Jeeves [118].

In Dabbas et al. [56, 57, 58], the above approach is used to determine a
combined criterion for four objectives that are similar to AT, Var(L), ACT,
and finally Var(CT), defined in Sect. 3.3.1. The dispatching rules used are the
CR dispatching rule, the throughput (TP) dispatching rule, the line balance
(LB) rule, and finally the FC rule.

The CR dispatching rule works, as discussed in Sect. 4.3.1. The TP rule
works as follows. The SPT rule is applied to non-batching machines, while
for batching machines, the loads with the highest number of wafers per hour
get the highest priority because in this situation, the batch fullness can be
increased. A more global dispatching rule is the LB rule. Using LB, products
at stages with higher deviations from their WIP goal get higher priority.
WIP goals determine the average WIP required at each stage of a process
flow such that output requirements are met. WIP goals tie the required TP
rate of product i to the CT at stage j using Little’s law (cf. Sect. 3.2.7):

WIP(Li j) = λi jCTi j, (4.52)

where WIP(Li j) is the WIP goal for product i at stage j, λi j is the correspon-
ding TP rate, and CTi j is the CT value, i.e., the sum of waiting time and
processing time. The quantity λi j can be calculated by dividing the required

4.7 More Sophisticated Approaches 101

daily output for i by the number of process steps to determine the daily
output of i at stage j because then the line is balanced. The goal CT values
CTi j can be derived from simulation studies.

Finally, the FC dispatching rule prioritizes jobs with the objective to
balance the workload on the different machines. This rule is described in
more detail in Sect. 4.2.1.

The reason for selecting the above dispatching rules is that they each
target a different performance measure of interest. CR identifies the quality
of dispatching from a point of view of on-time delivery, i.e., AT. The TP rule
improves the quality of dispatching from a CT point of view. Its objective is
to maximize TP at machines regardless of due date priorities. The LB rule
has the objective of minimizing the WIP variation vs. a pre-set goal in an
effort to linearize output, while FC takes the workload balancing perspective.

The blended dispatching approach was compared to single dispatching
criteria like CR, SPT, or FLNQ in [56, 57] using full wafer fab simulation mo-
dels. The simulation results indicate that CT, Var(L), and on-time delivery-
related performance measures are improved to a large extent. The blended
approach shows a behavior similar to the CR dispatching rule with respect to
Var(CT), but it outperforms the two remaining dispatching rules. It is also
demonstrated by the simulation experiments that the resultant WIP profile
is more stable and has a lower average value when using the blended dis-
patching approach. Lower WIP translates to lower ACT values, whereas less
variability in the profile translates to lower Var(CT) values and consequently
better overall performance measure values.

4.7.4 Automated Discovery of Dispatching Rules

So far, we assume that we manually select dispatching rules out of a given
set of rules. Then simulation experiments have to be carried out to assess
the performance of the rules, and finally, an appropriate rule is selected. This
approach is in a certain sense rigid. That is why we allow for the selection
of appropriate weights to construct blended dispatching rules in Sect. 4.7.3.
This approach is less rigid; however, only the weights can be changed and
not the structure of the rules.

In this section, we describe work that is related to an automated discovery
of dispatching rules. A dispatching rule is represented by an index that as-
sesses all jobs awaiting processing at a given machine at time t when the
resource is available (cf. Sect. 4.1 for details). The index takes several at-
tribute values into account. The priority index might be considered as a
logical expression. Selecting a dispatching rule means specifying the priority
index.

We discuss an approach to construct new dispatching rules based on a
given set of primitives. These primitives belong to two subsets (see Geiger
et al. [96]):

102 4 Dispatching Approaches

• A set of relational and conditional functions denoted by F .
• A set of terminals T that is problem-specific and consists of a set of variables
and numerical constants. Terminals cannot be broken down into smaller
units.

The set of relational and conditional functions is given by unary and binary
operators and functions. Examples for unary operators are the four basic
arithmetic operators +, −, /, ∗, whereas EXP, ABS, MAX, MIN are examples
of functions. Furthermore, the conditional function IF3 is often important.
It is the ternary version of the IF-THEN-ELSE expression used in program-
ming languages, i.e., if a ≥ 0 then b else c, where a, b, and c are expressions.
The precedence relationship of the functions is given. It is preserved and can-
not be redefined. More examples of functions F to construct dispatching rules
can be found in [96, 295].

We continue with examples for terminals. The following terminals are used,
and most of them refer to a given job j:

• PT: The processing time p j is modeled using this terminal.
• DD: This terminal is used to refer to d j.
• W: The weight wj is expressed by this terminal.
• CurT: This is the current time t where the dispatching decision is made.
• Con: A constant value, i.e., a number z ∈ IR, is denoted by this terminal.
• AvgPT: This terminal denotes the average processing time of all jobs wait-
ing for processing. It represents the quantity p̄.

It becomes clear that the terminals model the attribute values within the
priority indices. More examples for terminals used to construct dispatching
rules can be found in [95, 96, 237].

The logical expression of the priority index is first transformed into an
intermediate representation using prefix notation. In prefix notation, the
function is written before the arguments it operates on (see Preiss [248]).
Compared to the logical expression, the prefix notation has the advantage
that an expression tree can be derived from it automatically by parsing the
expression in prefix notation from left to right. Terminals are the leaves of an
expression tree, i.e., variables or constants in the logical expression for a cer-
tain priority index. Each single function in a logical expression is represented
by a node of the expression tree. When a symbol s ∈ F is detected during
the parsing process, then a node is created in the expression tree. When a
terminal τ ∈ T is found, then a leaf is added to the tree. When a subtree
cannot have more leaves, then a new subtree is started when the next symbol
τ is detected.

On the other hand, each expression tree can be transformed automatically
into an expression in prefix notation by traversing the tree recursively using
the following procedure.
Algorithm Traverse Expression Tree

1. When a visited node is a terminal, then it is written at the end of the
partial expression in prefix notation.

4.7 More Sophisticated Approaches 103

2. When a nonterminal symbol is found, then a left parenthesis is written.
The symbol is written into the expression after the left parenthesis.

3. The left subtree is traversed using step 1 and step 2.
4. The right subtree is traversed, if any, using step 1 and step 2, and finally,

a right parenthesis is written.

Let us consider the ATC dispatching rule given by index (4.21) to illus-
trate these rather abstract concepts. In this example, the index can be rep-
resented as:

(∗(/W PT)(EXP(−(/(MAX(−(DD (−PT CurT))0)(∗Const AvgPT))) (4.53)

using the notation for functions and terminals introduced. The resulting tree
is shown in Fig. 4.5.

*

W

/ EXP

/

MAX *

-

-

PT

0 Const AvgPT

CurTPT

DD

-

Figure 4.5: Tree representation of the ATC dispatching rule

The basic learning system model described in Sect. 3.2.10 is used to
discover new dispatching rules. The corresponding learning element is realized
using genetic programming (GP). The performance element is the constructed
dispatching rule. Feedback is available from discrete-event simulation. GP is

104 4 Dispatching Approaches

a special kind of a GA. It uses tree structures of variable lengths to repre-
sent solution candidates and can be used to automatically discover logical
expressions or even computer programs.

GP starts from a candidate set of dispatching rules called a population
(cf. Sect. 3.2.6). These rules are either generated randomly or based on heuris-
tics. The quality of each dispatching rule is assessed using discrete-event sim-
ulation and a set of performance measures of interest. The BS and the BP
are represented by an appropriate simulation model. Each dispatching rule
from the candidate set is equipped after the performance assessment with a
set of values for the performance measures.

The reasoning mechanism consists of a selection component and a
component that generates new dispatching rules. The selection component
uses the performance measure values for each rule of the candidate set to
choose a set of high-performing dispatching rules that form the basis for
generating a new candidate set. The entire cycle is repeated until a certain
stopping criterion is fulfilled.

New dispatching rules will be generated using crossover and mutation
operators as in common GAs. The crossover operator works as follows. Two
trees are randomly selected from the current set of candidate rules. A subtree
is identified in each parent rule randomly. These subtrees are swapped in the
next step between the two parent rules. It is clear that because of the entire
subtrees used, only feasible offspring are produced. The mutation operator
starts by randomly selecting a subtree from a parent rule, then this subtree
is replaced by a randomly generated subtree using the sets F and T .

Experiments with the described discovery approach using simulation
models of large-scale wafer fabs are described by Pickardt et al. [237]. The dis-
covered rules clearly outperform ATCS-type dispatching rules. The basic
discovery approach is extended to automatically learn batching rules for single
machine scheduling by Geiger and Uzsoy [95]. Overall, it seems that discover-
ing dispatching rules automatically is a promising direction of future research.

	Chapter 4 Dispatching Approaches

	4.1 Motivation and Taxonomy of Dispatching Rules
	4.2 Simple Dispatching Rules
	4.2.1 JS-Related Dispatching Rules
	4.2.2 MS-Related Dispatching Rules

	4.3 Composite Dispatching Rules
	4.3.1 Critical Ratio Dispatching Rules
	4.3.2 ATC-Type Dispatching Rules
	4.3.3 Composite Dispatching Rules for the MS

	4.4 Simulation Results for Assessing Dispatching Rules
	4.5 Batching Rules
	4.6 Look-Ahead Rules
	4.6.1 Dynamic Batching Heuristic
	4.6.2 Next Arrival Control Heuristic
	4.6.3 Additional Look-Ahead Research
	4.6.4 BATC-Type Rules

	4.7 More Sophisticated Approaches
	4.7.1 Rule-Based Systems
	4.7.2 Determining Parameters of Dispatching Rules Based on Iterative Simulation
	4.7.3 Construction of Blended Dispatching Rules
	4.7.4 Automated Discovery of Dispatching Rules

