
Chapter 8
Memetic Algorithms in Continuous
Optimization

Carlos Cotta and Ferrante Neri

8.1 Introduction and Basic Concepts

Intuitively, a set is considered to be discrete if it is composed of isolated elements,
whereas it is considered to be continuous if it is composed of infinite and contiguous
elements and does not contain “holes”.

More formally, to introduce the concept of continuous optimization, some pre-
liminary definitions are required. If we consider sub-sets of real numbers, where the
partial order is obviously valid, a set S is said to be dense if

∀x1,x2 ∈ S : ∃x3 : x1 � x3 � x2. (8.1)

If the property above is not satisfied for all the points, the set is said to be discrete.
When the property is not satisfied for some of the points in D, the set is composed
of multiple not interconnected dense sets.

It must be remarked that, since a set of infinite numbers cannot be represented
in a machine, in computer science all the sets are in principle discrete. On the other
hand, a set where the distance between each pair of consecutive points is not bigger
than the machine precision ε can be considered as a dense set. In other words, the
definition of a dense set in computer science can be modified in the following way.
A set S is said to be dense in computer science if

∀x1,x2 ∈ S,x1 < x2 : ∃x3 ∈ S : [(x3− x1) � ε]∧ [(x2− x3) � ε] . (8.2)

Carlos Cotta
Dept. de Lenguajes y Ciencias de la Computación. Universidad de Málaga,
Campus de Teatinos, 29071 Málaga, Spain
e-mail: ccottap@lcc.uma.es

Ferrante Neri
Department of Mathematical Information Technology, P.O. Box 35 (Agora),
40014 University of Jyväskylä, Finland
e-mail: ferrante.neri@jyu.fi

F. Neri et al. (Eds.): Handbook of Memetic Algorithms, SCI 379, pp. 121–134.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

ccottap@lcc.uma.es
ferrante.neri@jyu.fi

122 C. Cotta and F. Neri

A multidimensional set composed of the Cartesian product of multiple dense sets S
is said to be decision space D. An optimization problem defined on a decision space
D is said to be continuous optimization problem. More specifically, throughout this
chapter we refer to the minimization problem of an objective function f (x), where x
is a vector of n design variables in a decision space D. In general, this optimization
problem can be subject to a set of constraints. For the sake of simplicity, in this
chapter we just consider the minimization within a hyper-rectangular space.

Although the concept of continuous optimization is strictly related to the concept
of continuous functions, the two concepts should not be identified. According to the
Cauchy definition, a continuous function is characterized by the following property:
an infinitesimal change in the independent variable corresponds to an infinitesimal
change of the dependent variable. The optimization of a continuous function is al-
ways a continuous optimization problem. The reverse statement is not not true. In
computer science, even when the function displays discontinuity points still the re-
sulting problem is continuous.

This chapter focuses on continuous optimization problems and on the application
of Memetic Algorithms (MAs) in order to solve such problems. Section 8.2 high-
lights the difference between global and local optimization for continuous problems.
Section 8.3 briefly illustrates a set of popular global optimizers which can be used
as an evolutionary framework within a MA.

8.2 Global and Local Continuous Optimization

In discrete optimization, solutions are simply characterized by their fitness values.
Thus, a solution can either be optimal or suboptimal. In continuous optimization, the
situation is different as the position of each candidate solution within the decision
space takes a high importance. It can intuitively be seen from the Cauchy definition
of continuous function that for a given point its closest points are expected to have a
similar performance with respect to the point. In this context, the concept of neigh-
borhood is extremely important. For a given point, its neighborhood is that set of
points characterized by distance ε from it. This concept is fundamental in contin-
uous optimization because, unlike the discrete optimization case, it make sense to
discuss about small movements and search directions. In other words, unlike what
happens in the discrete case, in continuous optimization it makes sense to discuss
about the gradient which can be redefined, along the generic variable xi, for the
“continuous discrete” case of computer science in the following way:

∂ f
∂xi

=
f (xi + ε)− f (xi)

ε
. (8.3)

If a gradient can be defined, it can be used from a starting point to select the most
promising neighbor and thus to identify a promising search direction. The informa-
tion derived from the knowledge of the gradient values can be obviously exploited
within an optimizer. A major difference should be highlighted between the gradi-
ent defined above for continuous problems in computer science and the classical

8 Memetic Algorithms in Continuous Optimization 123

gradient in mathematical analysis. While in mathematical analysis a null gradient
corresponds to a critical point, i.e., a true local/global optimum, plateau or saddle
point, in computer science a null gradient (according to the definition above) in
a point means that the entire neighborhood of this point has the same fitness val-
ues; thus the point falls within a plateau. From this consideration, it is clear that
the null gradient condition cannot be used in computer science to identify the true
local/global optima (which is the goal of the optimization) but only plateaus. The
detection of local optima should be performed in a different way: a point is a lo-
cal minimum(maximum) if the objective function values of the neighborhood are all
higher (lower) than that of the point.

Without a loss of generality, let us consider minimization problems. Usually op-
timization problems are multimodal, i.e., contain multiple local minima. However,
the goal in optimization is to detect the global optimum, that is, in our case, the min-
imum exhibiting the lowest function value. All the methods that make an explicit or
implicit use of gradient information tend to detect the closest local minimum. Thus,
an efficient global optimizer should not be based only on gradient information but
also on direct fitness comparisons among solutions regardless their position within
the decision space. This approach guarantees an extensive search and hopefully al-
lows that algorithms get stuck within local optima. In this context, it is important
to define the concept of basin of attraction. Two definitions can be given in both
a broad and restricted sense. In a broad sense, for a given search strategy, objec-
tive function, and starting point(s), a basin of attraction is the set of points which
can be reached. However, when in a generic way computer scientists refer to the
term basin of attraction without specifying the search strategy, it is meant that the
specific search strategy is the classical deterministic hill-descender which perturbs
separately each variable. Thus, a decision space can be mapped as a composition
of basins of attraction and the goal of global optimization is to detect the globally
optimum basin of attractions and avoid the local ones.

MAs in continuous optimization are thus thought as algorithmic structures which
require both global and local search components whose coordination make the suc-
cess of the computational paradigm. These structures are usually composed of an
evolutionary framework which has the role of performing the global search and one
or more local search algorithms activated within the generation cycle of the external
framework.

8.3 Global Optimization Algorithms

While some local search algorithms have been previously illustrated, in this chap-
ter some global search algorithms, which are shown as examples of evolutionary
frameworks in MAs, are briefly presented in the following section.

124 C. Cotta and F. Neri

8.3.1 Stochastic Global Search, Brute Force and Random Walk

The simplest (and often not so efficient) way to perform the global optimal search of
a black box function is the progressive perturbation of one or more solutions in order
to improve upon its performance. The search can be performed by various search
rules, for example by generating a new solution within the decision space or by
adding a randomized perturbation vector to a trial solution. This class of algorithms
is often named Stochastic Global Search or simply Stochastic Search, see [838],
and has the crucial importance of being the basic principle behind all the modern
computational intelligence optimization algorithms. It must be observed that all the
modern algorithms which take their inspiration on the most various natural sources,
such as principles of the evolution or collective behavior of animals or even MAs,
are at the end stochastic search algorithms which differ one from another on the
trial solution generation mechanism or the strategy for retaining the solutions (and
selecting the search directions).

In order to clarify this concept let us consider two classical global optimization
algorithms which are based on completely opposite search logics. The first, namely
brute force, consists of the construction of a regular grid within the decision space
and the sample of the points in correspondence to the nodes. This algorithm has
been taken into account in this context because it is a global search algorithm based
on a fully deterministic generation of solutions. Another famous simple stochastic
search is the random walk, see [337]. This algorithm perturbs each coordinate of
a candidate solution by means of a Gaussian distribution. It can be immediately
observed that the random walk is a highly randomized method as the trial search
directions rely only on stochastic perturbations.

As an additional remark, although very different, these two methods are both
plagued by the same problem: their performance highly depends on the parameter
setting. In the brute force, the selection of step size, and thus amount of points to
sample, must be carried out to avoid inefficient search or an unacceptable compu-
tational time. Likewise, in the random walk the success of the algorithm heavily
depends on the mean value and standard deviation of the perturbation Gaussian. In
other words, regardless the degree of randomization in the search logic, when there
is no information on the objective function, the parameter setting becomes key point
in the algorithmic performance.

8.3.2 Evolution Strategy and Real Coded Evolutionary
Algorithms

In 70s, while Genetic Algorithms (GAs) were developed for discrete and combi-
natorial optimization problems [389], Evolution Strategy (ES) were developed for
continuous optimization problems [760, 798]. In ES, each individual is a real-valued
vector composed of its candidate solution representation x and a set of self-adaptive
parameters σ :

(x,σ) = (x1, . . . ,xn,σ1, . . . ,σn) (8.4)

8 Memetic Algorithms in Continuous Optimization 125

In many evolution strategy variants, a set of self-adaptive parameters of a second
kind can be added to the solution encoding. At each generation cycle, parent selec-
tion relies on pseudo-randomly selecting some solutions to undergo recombination
and mutation. In evolution strategies a big emphasis is placed on mutation while
recombination sometimes plays a minor role (although it is not simply dismissed as
in evolutionary programming) – see [65] for a in-depth treatment of these two oper-
ators in ES. The general mutation rule is defined, for the generic ith design variable,
by:

σi = σie
N(0,τ ′)+Ni(0,τ) (8.5)

and
xi = N (xi,σi) (8.6)

where N (μ ,σ) is normally a distributed random number with mean μ and standard
deviation σ . The update of σ can be performed by means of several rules proposed
in literature. The most famous are the 1/5 success rule [760], uncorrelated mutation
with one step size, uncorrelated mutation with n step sizes and correlated mutation,
for details see [239]. The method shown in Eq. (8.5) corresponds to uncorrelated
mutations with n step sizes, and τ,τ ′ are two parameters (the local and the global
learning rate respectively) that can be set as [32]:

τ = 1/

√
2
√

n (8.7)

τ ′ = 1/
√

2n (8.8)

The notation Ni(0,τ) is used to denoted a different random number for each param-
eter, whereas N(0,τ) is a common –solution-wise– random number. The general
idea is that the solutions are mutated within their neighborhood based on a certain
probabilistic criterion with the aim of generating new promising solutions.

The recombination can be discrete or intermediary: discrete recombination gener-
ates an offspring solution by pseudo-randomly choosing the genes from two parent
solutions, while intermediary recombination generates an offspring whose genes are
obtained by calculating a randomly weighted average of the corresponding genes of
two parents (other methods are possible though – see Section 8.4).

The parent selection can be performed either in the genetic algorithm fashion
by replacing the whole parent population with the best members of the offspring
population or by merging parent and offspring populations and selecting the wanted
number of individuals on the basis of their fitness values. These strategies are usually
known as comma and plus strategy respectively.

In the 90s, a reorganization of the knowledge regarding evolution inspired meta-
heuristics was performed. This lead to the fact that GAs, ES, Evolutionary Program-
ming and other branches of the field have all been seen as an expression of the same
idea and named Evolutionary Algorithms (EAs). These algorithms, characterized
by four phases, 1) parent selection, 2) crossover, 3) mutation, 4) survivor selec-
tion, can be implemented to both continuous and discrete optimization, by properly

126 C. Cotta and F. Neri

Fig. 8.1. Functioning of the BLX−α recombination operator. Offspring variable zi is ran-
domly sampled from the interval denoted by a thick line.

representing the solutions and their recombination. The most natural way to repre-
sent candidate solutions of a continuous optimization problem is simply to use them
“as they are”, i.e., have a representation of vectors of real numbers without any
conversion (as in classical GAs where all the numbers were converted to binary).

A multitude of recombination strategies among pairs or small groups of solutions
have been proposed in literature. The advantages of one strategy with respect to an-
other are, in general, dependent on the problem. A very broadly used recombination
strategy is the so called BLX−α crossover, see [246, 382]. For two given parent
solutions x and y, their offspring z is generically calculated in the following way:

zi = U [mi−αI,Mi +αI] (8.9)

where α is a parameter, Mi = max(xi,yi), mi = min(xi,yi), I = |xi− yi| and U [a,b]
is a uniformly distributed random number in the interval [a,b]. Parameter α is thus
used to tune the explorative capability of crossover – see Fig. 8.1. A parent centric
variant of BLX−α is also defined in [536] by sampling each offspring variable
from a closed interval of radius 2αI centered at any of the corresponding parental
variables.

Precisely related to this exploration issue (or more generically to the avoid-
ance of premature convergence), it is worth mentioning another EA variant that
is commonly used as the population-based engine of continuous MA, namely the
CHC (Cross generational elitist selection, Heterogeneous recombination, and Cata-
clysmic mutation) algorithm [246]. The main idea of this algorithm is to combine
strong selective pressure with incest-prevention strategies and explorative recom-
bination. The incest-prevention strategy amounts to avoiding that two very similar
solutions are recombined (since this would likely produce very similar offspring
as well, hence leading to diversity loss and potential premature convergence). To
do so, a distance parameter δ is maintained, determining the minimal distance that
must exist between two solutions if these are to be recombined. This parameter
can change dynamically in order to cope with the progressive convergence of the
population. As to the selection, it is typically done using the plus strategy of ES.
Algorithm 16 shows the pseudocode of the CHC algorithm.

A final evolutionary approach for continuous optimization that deserves be-
ing mentioned is the Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
[362]. This algorithm falls within the class of estimation of distribution algorithms
[534] (EDAs) and has been shown to be extremely efficient when solving contin-
uous optimization benchmarks [28]. CMA-ES is based on generating solutions via
a multivariate normal distribution whose mean and covariance matrix is adaptively

8 Memetic Algorithms in Continuous Optimization 127

Algorithm 16. Pseudo-code of the CHC algorithm

begin1

generate initial population P←{p1, · · · , pμ};2

initialize distance parameter δ ;3

while ¬ termination-condition do4

create solutions pairs S← (pi, p j);5

P′ ← /0;6

for (p, p′) ∈ S do7

d←distance(p, p′);8

if d � δ then9

p′′ ←recombine(p, p′);10

P′ ← P′ ∪{p′′};11

endif12

endfor13

P←plus-select(P,P′);14

if P′ = /0 then15

decrease δ ;16

if δ < 0 then17

restart population P;18

initialize distance parameter δ ;19

endif20

endif21

endw22

end23

learnt as in EDAs, i.e., utilizing truncation selection to pick a subset of the best
solutions generated in each step, and using these solutions to update the distribu-
tion parameters. CMA-ES has a solid theoretical background and several desirable
properties such as invariance to several transformations of the objective function
and a relatively low number of parameters. Furthermore, it can not only serve as
a population-based engine but also as a local searcher if adequately parameterized,
e.g., (1 + 1)-CMA-ES [605], We refer to [360] for further details and source code
of the CMA-ES algorithm.

8.3.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-based optimization metaheuris-
tic introduced in [458], and then developed in various variants for test problems
and applications. The main metaphor employed in PSO is that a group of particles
makes use of their “personal” and “social” experience in order to explore a decision
space and detect solutions with a high performance. More specifically, a population
of candidate solutions is randomly sampled within the decision space. Subsequently,
the fitness value of each candidate solution is computed and the solutions are ranked
on the basis of their performance. The solution associated to the best fitness value
detected overall is named global best xgb. At the first generation, each solution xi

128 C. Cotta and F. Neri

is identified with the corresponding local best solution xlb
i , i.e., the most successful

value taken in the history of each solution. At each generation, each solution xi is
perturbed by means of the following rule:

xi = xi + vi (8.10)

where the velocity vector vi is a perturbation vector generated in the following way:

vi = ωvi +α1(xlb
i − xi)+α2(xgb− xi) (8.11)

where ω is the so-called inertia parameter (the higher this parameter, the longer it
takes the particle to change direction), and α1,α2 are two parameters that control
the attraction the particle feels towards the best-known local/global solutions. These
are typically set uniformly at random –within the interval (0,1), i.e., 0 excluded
and 1 included– in each step; we denote as U(0,1) as such a uniform distribution.
The fitness value of the newly generated xi is calculated and if it outperforms the
previous local best value the value of xlb

i is updated. Similarly, if the newly generated
solution outperforms the global best solution, a replacement occurs. At the end of
the optimization process, the final global best detected is the estimate of the global
optimum returned by the particle swarm algorithm. It is important to remark that in
PSO, there is a population of particles which has the role of exploring the decision
space and a population of local best solutions (the global best is the local best with
the highest performance) to keep track of the successful movements.

In order to better understand the metaphor and thus the algorithmic philosophy
behind PSO, the population can be seen as a group of individuals which search
for the global optimum by combining the exploration along two components: the
former is the memory and thus learning due to successful and unsuccessful moves
(personal experience) while the latter is a partial imitation of the successful move
of the most promising individual (social experience). In other words, as shown in
the formula above, the perturbation is obtained by the vectorial sum of a move in
the direction of the best overall solution and a move in the direction of the best
success achieved by a single particle. These directions in modern PSO algorithms
are weighted by means of random scale factors, since the choice has to turn out
to be beneficial in terms of diversity maintenance and prevention of premature
convergence.

Many versions and variants of PSO have been proposed in literature in order
to attempt to enhance its performance. In order to give a flavor of possible PSO
modifications, two examples are here reported. A popular variant is the linearly
variable weight factor ω proposed in [809]:

ω = ωmax− (ωmax−ωmin)
g
G

(8.12)

where g is the current generation and G is the generation budget. Parameters ωmax

and ωmin are usually set equal to 0.9 and 0.4, respectively.

8 Memetic Algorithms in Continuous Optimization 129

Algorithm 17. PSO pseudo-code

begin1

generate Np particles and Np velocities pseudo-randomly;2

copy the population of particles into the set of local bests: ∀i,xi−lb = xi ;3

while budget condition do4

for i = 1 : Np do5

compute f (xi);6

endfor7

for i = 1 : Np do8

// ** Velocity Update **
generate a vector of random numbers U(0,1);9

vi = ωvi +U(0,1)(xlb
i −xi)+U(0,1)(xgb−xi);10

// ** Position Update **
xi = xi +vi;11

// ** Survivor Selection **
if f (xi) � f (xi−lb) then12

xlb
i = xi;13

if f (xi) � f
(
xgb
)

then14

xgb = xi;15

endif16

endif17

endfor18

endw19

end20

Another variant is the constriction factor proposed in [129]. Within such a scheme
the velocity update is:

vi = χvi + c1U(0,1)
(

xlb
i − xi

)
+ c2U(0,1)

(
xnb

i − xi

)
(8.13)

where xnb
i is the best within the neighborhood (see for details [129]). The constric-

tion factor χ is defined as:

χ =
2∣∣∣2−φ−
√
φ2−4φ

∣∣∣
(8.14)

where φ = c1 + c2 = 4.1 and c1 = c2 = 2.05, see [129]. A pseudo-code showing the
main features of the basic PSO is given in Algorithm 17.

8.3.4 Differential Evolution

Differential Evolution (DE) is an interesting optimizer for continuous problems
which shares some properties of evolutionary algorithms (e.g., the crossover) and
some others of swarm intelligence algorithms (the one-to-one replacement). Ac-
cording to its original definition given in [853], DE consists of the following steps.

130 C. Cotta and F. Neri

An initial sampling of Spop individuals is performed pseudo-randomly with a uni-
form distribution function within the decision space D. At each generation, for each
individual xi from the Spop in the population, three mutually distinct individuals
xr, xs and xt are pseudo-randomly extracted from the population. According to DE
logic, a provisional offspring x′off is generated by mutation as:

x′off = xt + F(xr− xs) (8.15)

where F ∈ [0,1+[is a scale factor which controls the length of the exploration vector
(xr− xs) and thus determines how far from point xi the offspring should be gener-
ated. With F ∈ [0,1+[, it is meant here that the scale factor should be a positive value
which cannot be much greater than 1, see [733]. While there is no theoretical upper
limit for F , effective values are rarely greater than 1.0. The mutation scheme shown
in Eq. (8.15) is also known as DE/rand/1. Other variants of the mutation rule have
been subsequently proposed in literature, see [745]:

• DE/best/1: x′off = xbest + F (xs− xt)
• DE/cur-to-best/1: x′off = xi + F (xbest − xi)+ F (xs− xt)
• DE/best/2: x′off = xbest + F (xs− xt)+ F (xu− xv)
• DE/rand/2: x′off = xr + F (xs− xt)+ F (xu− xv)
• DE/rand-to-best/2: x′off = xr + F (xbest − xi) +F (xr− xs)+ F (xu− xv)

where xbest is the solution with the best performance among individuals of the pop-
ulation, xu and xv are two additional pseudo-randomly selected individuals. It is
worthwhile to mention the rotation invariant mutation shown in [732]:

• DE/current-to-rand/1 xoff = xi + K (xt − xi)+ F ′ (xr− xs)

where K is is the combination coefficient, which as suggested in [732] should be
chosen with a uniform random distribution from [0,1] and F ′= K ·F . For this special
mutation the mutated solution does not undergo the crossover operation (since it
already contains the crossover), described below.

Recently, in [733], a new mutation strategy has been defined. This strategy,
namely DE/rand/1/either-or, consists of the following:

x′off =

{
xt + F (xr− xs) if U (0,1) < pF

xt + K (xr + xs−2xt) otherwise
(8.16)

where for a given value of F , the parameter K is set equal to 0.5(F + 1).
When the provisional offspring has been generated by mutation, each gene of

the individual x′off is exchanged with the corresponding gene of xi with a uniform
probability and the final offspring xoff is generated:

xoff , j =

{
xi, j if U (0,1) < CR

x′off , j otherwise
(8.17)

8 Memetic Algorithms in Continuous Optimization 131

Algorithm 18. DE/rand/1/bin pseudo-code

begin1

generate Np individuals of the initial population pseudo-randomly;2

while budget condition do3

for k = 1 : Np do4

compute f (xk);5

endfor6

for k = 1 : Np do7

// ** Mutation **
select three individuals xr, xs, and xt ;8

compute x′off = xt +F(xr−xs);9

// ** Crossover **
xoff = x′off ;10

for i = 1 : n do11

generate U(0,1);12

if U(0,1) > Cr then13

xoff [i] = xk [i];14

endif15

endfor16

// ** Survivor Selection **
if f
(
xoff
)

� f (xk) then17

save index for replacement xk = xoff ;18

endif19

endfor20

perform replacements;21

endw22

end23

where U (0,1) is a random number between 0 and 1; j is the index of the gene
under examination. This crossover strategy is well-known as binary crossover and
indicated as “bin”. For the sake of completeness, we mention that there exist a few
other crossover strategies, for example the exponential strategy see [733]. However
in this paper we focus on the bin strategy since it is the most commonly used and
often the most promising.

The resulting offspring xoff is evaluated and, according to a one-to-one spawning
strategy, it replaces xi if and only if f (xoff) � f (xi); otherwise no replacement oc-
curs. For sake of clarity, the pseudo-code highlighting the working principles of DE
is shown in Algorithm 18.

8.4 Particularities of Memetic Approaches for Continuous
Optimization

In principle the deployment of memetic algorithms on continuous domains can be
done using the generic algorithmic template presented in Chapter 4, much like it is

132 C. Cotta and F. Neri

done for combinatorial problems – see Chapter 6. This said, continuous optimization
problems have several distinctive features that must be considered in order to come
up with efficient memetic solvers. Two of the most relevant ones are:

• The cost of local search: in many combinatorial domains it is frequently possi-
ble to compute the fitness of a perturbed solution incrementally, e.g., let x be a
solution and let x′ ∈N (x) be a neighboring solution; then the fitness f (x′) can
be often computed as f (x′) = f (x)+Δ f (x,x′), where Δ f (x,x′) is a term that
depends on the particular perturbation done on x and is typically efficient to
compute (much more efficiently that a full fitness computation). For example,
in the context of the traveling salesman problem and the 2-opt neighborhood,
the fitness of a perturbed solution can be computed in constant time by calcu-
lating the difference between the weights of the two edges added and the two
edges removed. This is much more difficult in the context of continuous opti-
mization problems, which are often non-linear and hard to decompose as the
sum of linearly-coupled terms. Hence local search usually has to resort to full
fitness computations.
• The underlying search landscape: the interplay among the different search op-

erators used in memetic algorithms (or even in simple evolutionary algorithms)
is a crucial issue for achieving good performance in any optimization domain.
When tackling a combinatorial problem, this interplay is a complex topic since
each operator may be based on a different search landscape. It is then essential
to understand these different landscape structures and how they are navigated
– the “one operator, one landscape” view [434]. In the continuous domain the
situation is somewhat simpler, in the sense that there exists a natural underly-
ing landscape in Dn (typically D = R), that is induced by distance measures
such as Euclidian distance. In other words, neighborhood structures are defined
by closed spheres of radius ε in the case of unary operators, and by solid hy-
percubes in the case of recombination (recall for example the BLX−α opera-
tor). The intuitive imagery of local optima and basins of attraction naturally fits
here, and allows the designer to exert some control on the search dynamics by
carefully adjusting the intensification/diversification properties of the operators
used.

These two issues mentioned above have been dealt in the literature on memetic al-
gorithms for continuous optimization in different ways. Starting with the first one
(the cost of local search), it emphasizes the need for carefully selecting when and
how local search is applied (obviously this is a general issue, also relevant in com-
binatorial problems, but definitely crucial in continuous ones). Needless to say, this
decision-making is very hard in general [494, 857], see also Chapter 5, but some
strategies have been put forward in previous works. A rather simple one is to resort
to partial Lamarckianism [396] by randomly applying local search with probabil-
ity pLS < 1. Obviously, the application frequency is not the only parameter that
can be adjusted to tune the computational cost of local search: the intensity of local

8 Memetic Algorithms in Continuous Optimization 133

search (i.e., for how long is local improvement attempted on a particular solution)
is another parameter to be tweaked. This adjustment can be done blindly (i.e., pre-
fixing a constant value or a variation schedule across the run), or adaptively. For
example, Molina et al. [605] define three different solution classes (on the basis of
fitness) and associate a different set of local-search parameters for each of them.
Related to this, Nguyen et al. [665] consider a stratified approach, in which the
population is sorted and divided into n levels (n being the number of local search
applications), and one individual per level is randomly selected. This is shown to
provide better results than random selection. We refer to [40] for an in-depth em-
pirical analysis of the time/quality tradeoffs when applying parameterized local
search within memetic algorithms. This adaptive parameterization has been also ex-
ploited in so-called local-search chains [608], by saving the state of the local-search
upon completion of a certain solution for later use if the same solution is selected
again for local improvement. Let us finally note with respect to this parameteriza-
tion issue that adaptive strategies can be taken one step further, entering into the
realm of self-adaptation. An overview of the possibilities to this end is provided in
Chapter 11.

As to what the exploitation/exploration balance regards, it is typically the case
that the population-based component is used to navigate through the search space,
providing interesting starting points to intensify the search via the local improve-
ment operator. The diversification aspect of the population-based search can be
strengthened in several ways, such as for example using multiple subpopulations
[640], or diversity-oriented replacement strategies. The latter are common in scatter
search [320] (SS), an optimization paradigm closely related to memetic algorithms
in which the population (or reference set in the SS jargon) is divided in tiers: en-
trance to them is gained by solution on the basis of fitness in one case, or diversity
in the other case. Additionally, SS often incorporated restarting mechanisms to in-
troduce fresh information in the population upon convergence of the latter. Diversi-
fication can be also introduced via selective mating, as it is done in CHC (see Sect.
8.3.2). A related strategy was proposed by Lozano et al. [536] via the use of negative
assortative mating: after picking a solution for recombination, a collection of poten-
tial mates is selected and the most diverse one is used. Other strategies range from
the use of clustering [806] (to detect solutions likely within the same basin of attrac-
tion upon which it may not be fruitful to apply local search), or the use of standard
diversity preservation techniques in multimodal contexts such as sharing or crowd-
ing. It should also be mentioned that sometimes the intensification component of
the memetic algorithm is strongly imbricated in the population-based engine, with-
out resorting to a separate local search component. This is for example the case of
the so-called crossover hill climbing [432], a procedure which essentially amount
to using a hill climbing procedure on states composed of a collection of solutions,
using crossover as move operator (i.e., introducing a newly generated solution in
the collection –substituting the worst one– if the former is better than the latter).
This strategy was used in the context of real-coded memetic algorithms in [536]. A
different intensifying strategy was used by [161], by considering an exact procedure
for finding the best combination of variable values from the parents (a so-called

134 C. Cotta and F. Neri

optimal discrete recombination). This obviously requires that the objective function
is amenable to the application of an efficient procedure for exploring the dynas-
tic potential (set of possible children) of the solutions being recombined – see also
Chapter 12. We refer to [535] for a detailed analysis of diversification/intensification
strategies in hybrid metaheuristics (in particular in memetic algorithms).

Acknowledgements. C. Cotta is partially supported by Spanish MICINN under project
NEMESIS (TIN2008-05941) and by Junta de Andalucı́a under project TIC-6083. This re-
search is supported by the Academy of Finland, Akatemiatutkija 130600, Algorithmic Design
Issues in Memetic Computing.

	Memetic Algorithms in Continuous Optimization
	Introduction and Basic Concepts
	Global and Local Continuous Optimization
	Global Optimization Algorithms
	Stochastic Global Search, Brute Force and Random Walk
	Evolution Strategy and Real Coded Evolutionary Algorithms
	Particle Swarm Optimization
	Differential Evolution

	Particularities of Memetic Approaches for Continuous Optimization

