
Chapter 7
Memetic Algorithms and Fitness Landscapes in
Combinatorial Optimization

Peter Merz

7.1 Introduction

Combinatorial optimization problems (COPs) arise in many practical applications
in the fields of management science, biology, chemistry, physics, engineering, and
computer science. Although the search space is comprised of a finite number of can-
didate solutions, many of these problems are very complex and thus hard to solve.
Often, the search space grows exponentially with the problem size rendering enu-
meration schemes impractical. Moreover, for many problems it has been shown that
they are NP-hard, hence no polynomial time algorithm is known to find optimum
solutions. Therefore, effective meta-heuristics are required to find (near) optimum
solutions in short time. Memetic algorithms are known to perform well for a wide
range of combinatorial optimization problems. Still, an open question is when and
why they perform so well. After providing an overview and a common outline of
memetic algorithms for combinatorial optimization problems in section 2, we intro-
duce the concept of fitness landscapes in section 3 to address these two questions.
In Section 4 and 5 we present case studies of the TSP and the BQP, respectively,
in which we show and discuss results from the fitness landscape analysis. Further-
more, we discuss the state-of-the-art meta-heuristics for these problems. Section 6
concludes the chapter.

7.2 MAs in Combinatorial Optimization

The travelling salesman Problem (TSP) is one of the best-known combinatorial op-
timization problems. Often, new new ideas in meta-heuristics have initially been
tested on the TSP and were applied afterwards to other combinatorial problems.

Peter Merz
University of Applied Sciences and Arts Hannover,
Department of Computer Science and Business Administration, 30459 Hannover, Germany
e-mail: peter.merz@fh-hannover.de

F. Neri et al. (Eds.): Handbook of Memetic Algorithms, SCI 379, pp. 95–119.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

peter.merz@fh-hannover.de

96 P. Merz

Hence, it is not surprising that the first memetic algorithms have been developed for
the TSP. In the late 80s, several attempts have been made to apply evolutionary al-
gorithms to the travelling salesman problem. Especially, when using recombination,
many researchers discovered that it is necessary to use some form of local search
within the evolutionary framework [334]. One of the reasons why recombination-
based evolutionary algorithms fail to perform well on the TSP is that it is not trivial
to recombine some of the edges of two or more TSP tours into a single tour such that
all edges are from at least one of the parents and the resulting edge set is a valid TSP
tour. Most recombination operators introduce implicit mutations by adding random
edges of arbitrary length to ensure feasibility [230, 565, 581, 931]. As a conse-
quence, the offspring tend to be much worse than their parents if the parents have
a high fitness. Therefore, researchers considered applying local search to remove
these arbitrary long edges from the tours.

7.2.1 Combinatorial Optimization

According to [303], a combinatorial optimization problem P is either a minimization
problem or a maximization problem, and it consists of

1. a set DP of instances,
2. a finite set SP(I) of candidate solutions for each instance I ∈ DP, and
3. a function mP that assigns a positive rational number mP(I,x) called the solution

value for x to each instance I ∈ DP and each candidate solution x ∈ SP(I).

Thus, an optimal solution for an instance I ∈ DP is a candidate solution x∗ ∈ SP(I)
such that, for all x ∈ SP(I), mP(I,x∗) � mP(I,x) if P is a minimization problem, and
mP(I,x∗) � mP(I,x) if P is a maximization problem.

Due to the fact that the set of candidate solutions is finite, an algorithm for find-
ing an optimum solution always exists. This algorithm, referred to as exhaustive
search, simply evaluates and compares mP(I,x) for all x ∈ SP(I). Unfortunately, the
search space of many combinatorial problems grows exponentially with the prob-
lem size, i.e., the number of components in a solution vector x. Thus, this complete
enumeration scheme becomes impractical. For a large class of combinatorial opti-
mization problems no alternative algorithms running in polynomial time are known.
This phenomenon has led to the development of complexity theory [303], and in
particular, to the theory of NP-completeness.

Combinatorial optimization can be considered as a special case of discrete opti-
mization. However, in discrete optimization the search space is not always finite. In
contrast to integer programming, combinatorial optimization refers to problems on
graphs, matroids and other discrete structures.

7.2.2 MA Outline

Beginning with Brady [81], many researchers have made consequent use of local
search in their evolutionary algorithms for the TSP [86, 331, 622, 637, 896]. These

7 Memetic Algorithms and Fitness Landscapes in Combinatorial Optimization 97

Algorithm 12. The Memetic Algorithm

begin1

foreach S in Population do S← LocalSearch(Init());2

while not terminated do3

Offspring← ;4

for i← 0 to crossovers do5

A← Select(Population);6

B← Select(Population);7

C← LocalSearch(Recombine(A, B));8

Offspring← OffSpring + C;9

endfor10

for i← 0 to mutations do11

A← Select(Population);12

C← LocalSearch(Mutate(A));13

Offspring← OffSpring + C;14

endfor15

Population← Select(Population, Offspring);16

endw17

end18

approaches can be classified as memetic algorithms although they have not been
called so at the time they have been proposed. Some researchers used the term Ge-
netic Local Search [285, 286, 478, 584, 896], others described them as hybrids of
evolutionary and local search. Still today, many researchers use the same basic MA
framework that is shown in Alg.12. In this framework, local search is consequently
applied to all newly created solutions, more precisely to all the members of the
initial population created by some initialization operator, and those solutions cre-
ated by the mutation and recombination operators. In the framework, recombination
and mutation are treated independent of each other. In some MAs, mutation is only
applied after crossover. However, we concentrate on the framework above since it
allows for mutation–only MAs.

When using recombination, selection becomes highly important, since there is
a high probability of premature convergence. Due to the fact that local search is
expensive, MAs tend to have relatively small population sizes (10–40 individuals).
Compared to EAs without local search, the problem of convergence is more severe.
When the population only contains very similar solutions, recombination / com-
bined with local search will likely discover the same solutions again and again. It is
therefore important to keep diversity in the population. There are several methods
to deal with diversity preservation depending on the type of selection: In selection
for recombination, one can choose to recombine only those individuals which are
sufficiently far away from each other in the search space. Another approach is to
consider diversification in the recombination operator itself as has done in HX or
DPX [76, 246, 247]. Moreover, in selection for survival duplicates may be removed
such that each indivdual is found only once in the population [247] or replacement
scheme may be used that replaces similar solutions based on a distance threshold

98 P. Merz

[285, 286]. Finally, a restart mechanism can be used to diversify the population
once convergence has been detected [246, 581].

7.2.3 Related Meta-Heuristics

There are several meta-heuristics which are similar to MAs. Most notably, Scatter
Search [313] and Iterated/Stochastic Local Search [533]. While the former incorpo-
rates a recombination meachanism as and the MA framework above, the latter can be
considered as a special case of the MA above. In that case the population is reduced
to 1 and only mutation is used (#recombinations=0,#mutations=1), which simplifies
the algorithm significantly. Iterated local search (ILS) was also first proposed for the
TSP [427], but has been applied later on to various combinatorial problems [533].
The outline of iterated local search is shown in Alg. 13.

Algorithm 13. Iterated Local Search.

begin1

S← Init();2

S← LocalSearch(S);3

while not terminated do4

T←Mutate(S);5

T← LocalSearch(T);6

S← Select(S, T);7

endw8

end9

Iterated local search is also highly similar to some instances of variable neigh-
borhood search (VNS) [604].

7.3 Why and When MAs Work

Although many different meta-heuristics have been proposed for combinatorial opti-
mization problems, only little is known in which cases they are effective. Moreover,
every approach comes with a considerable number of parameters and it is often not
known which parameter settings are optimum due to the huge parameter space and
the computational time required for testing all possible combinations.

In the case of MAs, it would be highly desirable to have guidelines for the devel-
opment of MAs for new or untackled combinatorial optimization problems. Impor-
tant questions that arise are: Which local search operator or neighborhood to choose,
how many iterations to apply local search, to use recombination or mutation, how
to mutate or recombine and so forth. Fitness landscape analysis has been shown to
be valuable when trying to find answers to these questions. We therefore provide a
short overview of fitness landscapes and statistics methods to analyse them.

7 Memetic Algorithms and Fitness Landscapes in Combinatorial Optimization 99

7.3.1 The Concept of Fitness Landscapes

The concept of fitness landscapes [941], introduced to illustrate the dynamics of
biological evolutionary optimization, has been proven to be very powerful in evo-
lutionary theory. As metioned before, the concept has been shown to be useful for
understanding the behavior of combinatorial optimization algorithms and can help
in predicting their performance. Regarding the search space, i.e. the set of all (candi-
date) solutions, as a landscape, a heuristic algorithm can be thought of as navigating
through it in order to find the highest peak of the landscape; the height of a point in
the search space reflects the fitness of the solution associated with that point.

More formally, a fitness landscape (S, f ,d) of a problem instance for a given com-
binatorial optimization problem consists of a set of points (solutions) S, a fitness
function f : S→ IR, which assigns a real–valued fitness to each of the points in S,
and a distance measure d : S×S→ IR, which defines the spatial structure of the land-
scape. A fitness landscape can thus be interpreted as a graph GL = (V,E) with vertex
set V = S and edge set E = {(s,s′) ∈ S×S |d(s,s′) = dmin}, with dmin denoting the
minimum distance between two points in the search space. The diameter diamGL of
the landscape is another important property: it is defined as the maximum distance
between any two points in the search space.

For binary coded problems (S = {0,1}n), the graph GL may be a hypercube of
dimension n, and the distance measure may be the hamming distance between bit
strings. For this landscape, the minimum distance dmin is 1 (one bit with a different
value), and the maximum distance is diam GL = n.

7.3.2 NK-Landscapes

To study rugged fitness landscapes, Kauffman [451, 452] developed a formal model
for gene interaction which is called the NK-model. In this model, N refers to the
number of parts in the system, i.e. genes in a genotype or amino acids in a pro-
tein. Each part makes a fitness contribution which depends on the part itself and K
other parts. Thus, K reflects how richly cross-coupled the system is; it measures the
epistasis, i.e. the richness of interactions among the components of the system.

Each point in the NK-fitness landscape is represented by a bit string of length N
and can be viewed as a vertex in the N-dimensional hypercube. The fitness f of a
point b = b1, . . . ,bN is defined as follows:

f (b) =
1
N

N

∑
i=1

fi(bi,bi1 , . . . ,biK), (7.1)

where the fitness contribution fi of the gene at locus i depends on the allele (value of
the gene) bi and K other alleles bi1 , . . . ,biK . The function fi : {0,1}K+1→ IR assigns
a uniformly distributed random number between 0 and 1 to each of its 2K+1 inputs.
The values for i1, . . . , iK are chosen randomly from {1, . . . ,N} or from the left and
right of locus i. The former is called the random neighbor model while the latter is
called the adjacent neighbor model. Since the random neighbor model is NP-hard

100 P. Merz

and the adjacent model is not [929], we focus on the random case. With the NK
model, the “ruggedness” of a fitness landscape can be tuned by changing the value
of K and thus the number of interacting genes per locus. Low values of K indicate
low epistasis and high values of K indicate high epistasis.

7.3.3 Analysis of Fitness Landscapes

7.3.3.1 Autocorrelation Analysis

The local properties of the landscape have a strong influence on the effectiveness
of a local search, since in a local search the decision which point has to be visited
next is based solely on these local properties. The properties can be analyzed with
statistical methods such as autocorrelation/random walk correlation analysis. These
methods calculate (or estimate) the correlation of neighboring points in the search
space with respect to the local search neighborhood. The random walk correlation
function [845, 846, 928]

r(s) =
1

σ2(f) (m− s)

m−s

∑
t=1

(f (xt)− f̄)(f (xt+s)− f̄) (7.2)

of a time series { f (xt)} defines the correlation of two points s steps away along
a random walk of length m through the fitness landscape (σ2(f) denotes the vari-
ance of the fitness values). A step denotes here a move from the current solution
to a neighboring solution in the fitness landscape. Typical random walk correlation
functions for the TSP and NK-landscapes are displayed in Fig. 7.1.

Based on this correlation function, the correlation length � [846] of the landscape
is defined as

� =− 1
ln(|r(1)|) (7.3)

for r(1) �= 0. The correlation length directly reflects the ruggedness of a landscape.
The smaller the value for �, the more rugged the landscape. A landscape is said to be

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

C
or

re
la

tio
n

Steps

NK Landscape Random Walk Correlation

K=0,N=1000
K=2,N=1000

K=10,N=1000

Fig. 7.1. The random walk correlation functions of NK landscapes (right) with varying K.

7 Memetic Algorithms and Fitness Landscapes in Combinatorial Optimization 101

smooth if there is high correlation between neighboring points (correlation length
is large), and rugged if there is low or no correlation between neighboring solu-
tions (correlation length is small). It can be observed that higher correlation leads
to a higher number of iterations in a local search until a local optimum is reached
and may also lead to a higher fitness as Kauffman concludes [451]: On the other
hand, if the correlation is low, the local search terminates after few iterations in a
local optimum with relatively low fitness [451]. The correlation length as a mea-
sure of landscape ruggedness can be utilized to compare different neighborhoods
for a problem (assumed that the neighborhoods have the same size). The higher the
correlation, the more effective the local search.

Alternative landscapes in combinatorial optimization can be found by allowing
for infeasible solutions. However, the problem becomes then to find an appropri-
ate penalty function in order to obtain an effective local search. In the graph bi-
partitioning problem, local search can be performed by exchanging a vertex from
one set with a vertex from the other set. An alternative is to move just one vertex
to the other set. As a consequence, both sets can have different sizes and hence the
solution may be infeasible. Therefore, it is required to introduce a penalty function
to penalize infeasible solutions depending on the absolute difference of the sizes of
the two sets. The objective becomes

f (V1,V2) = |e(V1,V2)|+α(|V1|− |V2|)2, (7.4)

where V1,V2 are the two vertex sets, e(·, ·) is the number of edges between the two
sets, and α is called the imbalance factor [430]. In [20], the correlation length has
been used to determine the perfect imbalance factor α , resulting in the highest ran-
dom walk correlation. In experiments, it could been verified that the ”optimum”
imbalance factor leads to the best local search performance. Thus, the correlation
length can be used to find the smoothest and hence easiest landscape for a local
search for a given problem. In some cases, where the correlation length is problem
instance dependent, it may serve as an indicator for the hardness of the instance
for a local search. For NK-Landscapes as well as for other combinatorial optimiza-
tion problems such as the quadratic assignment problem, it can be observed that the
number of iterations of a local search (the number of moves until a local optimum is
reached) decreases for less correlated landscapes and the resulting solution quality
becomes worse [451, 581, 587].

7.3.3.2 Fitness Distance Correlation

The effectiveness of the evolutionary meta-search depends on the global properties
of the fitness landscape. Since in the MAs discussed in this chapter, the evolutionary
variation operators are applied to locally optimum solutions, the distribution of the
local optima is the most important global property of a landscape. The distribution
can be analyzed with a fitness distance correlation analysis of the local optima – the
peaks in the fitness landscape. The fitness distance correlation (FDC) coefficient ρ
is defined as

102 P. Merz

ρ(f ,dopt) =
Cov(f ,dopt)
σ(f)σ(dopt)

, (7.5)

where Cov(·, ·) denotes the covariance of two random variables and σ(·) denotes
the standard deviation. The FDC determines how closely fitness and distance to
the nearest optimum in the search space (denoted by dopt) are related. If fitness in-
creases when the distance to the optimum becomes smaller, then search is expected
to be easy for selection–based algorithms, since there is a “path” to the optimum via
solutions with increasing fitness. A value of ρ = −1.0 (ρ = 1.0) for a maximiza-
tion (minimization) problem indicates that fitness and distance to the optimum are
perfectly related and that search promises to be easy.

The FDC coefficient has been proposed in [435] as a measure for problem diffi-
culty for genetic algorithms. In [14], a counterexample is presented in which a GA
performs well on an uncorrelated landscape. Horjik and Manderick argue why FDC
is useful for recombination [394]. [832] propose the NKP model which is a superset
of the NK model and show that as K increases the correlation goes down but with
no statistically significant effect on the mean fitness of the local optima. A summary
of landscape metrics and related issues is provided in [438]. These papers, however,
concentrate on evolutionary algorithms without local search.

In respect to MA performance, FDC analysis may reveal a correlation between
the fitness and the distance of the local optima to the global optimum. The presence
of correlation implies that the fitness increases the closer the local optima are to
the global optimum. Therefore, an MA can exploit this feature by ‘hopping’ from
one local optimum to the next local optimum with better fitness until the global
optimum is reached. If recombination is used for variation, ‘jumping’ from one peak
to another can be achieved if the recombination is respectful, i.e. if the resulting
offspring point lies near both parents and has a distance to its parents that is no
greater than the distance between the parents themselves. Compared to other forms
of variation, the resulting offspring are closer to other local optima with high fitness.
In such cases, it is more likely that the offspring is within a suboptimal ‘basin of
attraction’ (with higher fitness than the parents) rather than jumping into an arbitrary
direction.

Besides the FDC, fitness distance scatter plots provide useful information about
a fitness landscape. In fact, there are cases in which the FDC can be misinterpreted
if the plot is not considered. In Fig. 7.2, typical fitness distance plots are provided.
The NK-landscape in the left (N = 1024,K = 2) is correlated but the landscape
(N = 1024,K = 11) shown on the right is uncorrelated, the local optima appear to
be randomly distributed in the search space. The correlated landscape has a mas-
sive central structure, meaning that the optimum is more or less central among other
near optimum local optima. This phenomenon can be observed for several other
combinatorial optimization problems and is also known as the big valley structure
(for minimization problems). The structured landscape is well suited for MA based
on recombination while the uncorrelated and structured landscape is not. In fact, for
the latter it was shown that variation based on mutation is better than recombination,
such as uniform crossover [581]. Thus, in uncorrelated landscapes, jumps in random

7 Memetic Algorithms and Fitness Landscapes in Combinatorial Optimization 103

0

0.01

0.02

0.03

0.04

0.05

0.06

0 200 400 600 800 1000

F
itn

es
s

di
ffe

re
nc

e
Δf

Distance to optimum dopt

C2-1024

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0 200 400 600 800 1000

F
itn

es
s

di
ffe

re
nc

e
Δf

Distance to optimum dopt

xdr-B11-1024

Fig. 7.2. FDC plots for two NK-landscapes with K = 2 (left) and K = 11 (right)

directions with a fixed jump distance are more effective than jumps toward other
solutions with high fitness using variable jump distances (respectful recombination).

7.3.3.3 Advanced Fitness Landscape Analysis

Although the analysis techniques described above are valuable, they do not focus
on all important aspects of the fitness landscape. Hence, in [583] we proposed some
rather simple statistical analysis methods. The first addresses the question how much
should be mutated in a mutation-based MA? Intuitively, the idea would be to mutate
only the minimum number of components in the solution vector that is sufficient to
leave the basin of attraction of the local optimum represented by the current solu-
tion. In [583], we computed the average escape rate form local optima depending on
the number of mutation steps for various landscapes. Since the higher the number
of mutation steps, the higher the chance to escape but also the higher the compu-
tational cost in terms of local search iterations to reach a new local optimum, we
proposed to calculate the number of local search iterations per escape for various
mutation strengths. In Fig.7.3, the escape rates and the number of iterations per es-
cape for NK-landscapes with three different values of K are shown on the left, and
on the right, respectively. Both escape rates and number of iterations per escape for

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

E
sc

ap
e

ra
te

Steps

NK Landscapes: 1-opt Local Optima

K=2,N=512
K=6,N=512

K=12,N=512

10

20

30

40

50

60

70

80

90

100

110

0 20 40 60 80 100

Ite
ra

tio
ns

 /
E

sc
ap

e

Steps

NK Landscapes: 1-opt Local Optima

K=2,N=512
K=4,N=512

K=12,N=512

Fig. 7.3. Basins of Attraction of Local Optima in the NK-model

104 P. Merz

1-opt local optima are shown depending on the number of mutation steps performed
to escape. The number of mutation steps is equal to the distance of the mutated solu-
tion and the local optimum. The left plot shows that the basins of attraction become
larger with increasing K or at least escaping becomes harder: more mutation steps
are required to leave the current basin of attraction. This is surprising, since with
increasing K the number of local optima increases and we would expect the size of
the basins of attraction to decrease. The question arises whether there is an optimum
mutation rate in terms of computation costs. At which mutation rate is the number
of visited local optima per time unit maximum? The answer is given in the left part
of the figure. Clearly, for K = 12, there is an optimum at 20 mutation steps. For the
landscapes with smaller K, the optimum approaches two mutation steps.

Additionally to this local search escape analysis we proposed random walk anal-
ysis starting at local optima. This analysis provides a picture of the search space
from a local optimums’ perspective. The idea here is that walking away from a lo-
cal optimum in a random direction may show a different degradation of fitness than
walking in the direction of another local optimum. How severe this difference is,
depends on fitness distance correlation of the local optima. However, this analysis
does not require the knowledge of a global optimum as the FDC analysis does. In
Fig.7.4, the results of a random walk analysis for the NK-model is shown for dif-
ferent values of K. The random walks in the direction of another local optimum
(simulating recombination) are denoted by ’rec’, the random walks in a random
direction (simulating mutation) or denoted by ’rw’. In the left, the average fitness
values of the solutions on a typical random walk path are displayed over the dis-
tance from the starting point of the random walk (parent A). As expected, the fitness
decreases when moving away from A. When approaching B the fitness increases as
expected. The fitness of the solutions halfway on a random walk between solution A
and B tell an interesting story. Let C denote such a point with d(A,C) = d(A,B)/2.
For K = {2,6}, this fitness is considerably higher than for the solutions on a ran-
dom walk in an arbitrary direction indicating that recombination produces much
better solutions than mutation. For K = 12, this effect can not be observed. Here,
the fitness halfway on a random walk between A and B is similar to the fitness on an
arbitrary random walk, indicating that recombination is not superior to mutation for
this landscape. This is not surprising since the fitness distance correlation analysis
reveals that the local optima are randomly distributed in the search space. On the
right of the figure, the fitness difference of points on directed and undirected ran-
dom walks is provided depending on the distance to parent A: The fitness difference
f (Crec)− f (Crw) for points Crec on a directed random walk and points Crw on an
undirected random walk depending on the distance d(A,C) = d(A,B)/2 are shown
The data is collected over a full run of a memetic algorithm. For K = 2, the fitness
difference and the distance of the parents are correlated (upper right of the figure).
The higher the distance, the better recombination performs compared to mutation
(upper left of the figure). Recombination is also always superior to mutation in case
of K = 6. However, The gain achieved with recombination is highest for distances
about 100 and decreases with decreasing distance as well as increasing distance. For
K = 12, the picture changes. Recombination and mutation perform equally well for

7 Memetic Algorithms and Fitness Landscapes in Combinatorial Optimization 105

0.5

0.55

0.6

0.65

0.7

0.75

0 50 100 150 200 250

F
itn

es
s

Distance

NK Landscapes (K=2,N=512): Random Walks

rec
rw

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 50 100 150 200 250 300

F
itn

es
s

D
iff

er
en

ce

Distance

NK Landscapes (K=2,N=512): Random Walks

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 50 100 150 200 250

F
itn

es
s

Distance

NK Landscapes (K=6,N=512): Random Walks

rec
rw

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 50 100 150 200 250 300

F
itn

es
s

D
iff

er
en

ce

Distance

NK Landscapes (K=6,N=512): Random Walks

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 50 100 150 200 250

F
itn

es
s

Distance

NK Landscapes (K=12,N=512): Random Walks

rec
rw

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 50 100 150 200 250 300

F
itn

es
s

D
iff

er
en

ce

Distance

NK Landscapes (K=12,N=512): Random Walks

Fig. 7.4. Random Walks Starting from a Local Optimum in the NK model.

a distance around 250. This is the case at the beginning of the MA run. Later in the
run of the MA, the average distance of the solutions in the population drops due to
the effects of mutation with a relatively small mutation rate. For a parents distance
smaller than 50, recombination is again superior to mutation.

7.4 Case Study I: The TSP

The travelling salesman problem (TSP) is believed to be the best-known combina-
torial optimization problem. Exact methods such as branch & cut as well as many
meta-heuristics have been evaluated initially on the TSP. The reason why it has
attracted so many researchers is probably that it is very easy to formulate and un-
derstand: Given a set of cities and the distances between them, the problem is to find
the shortest closed tour that visits each city exactly once. More formally, the tour
length

106 P. Merz

l(π) =
n−1

∑
i=1

dπ(i),π(i+1) + dπ(n),π(1) (7.6)

has to be minimized, where di j is the distance between city i and city j and π a
permutation of 〈1,2, . . . ,n〉. Thus, an instance I = 〈D〉 is defined by a distance matrix
D = (d)i j , and a solution (TSP tour) is a vector π with j = π(i) denoting city j to
visit at the i-th step.

A special case of the TSP is the Euclidean TSP. Here, the distance matrix di j is
symmetric, that is di j = d ji ∀ i, j ∈ {1,2, . . . ,n}, and the triangle inequality holds:
di j � dik +dk j ∀ i, j,k ∈ {1,2, . . . ,n}. The distance between two cities is defined by
the Euclidean distance between two points in the plane. These two assumptions do
not lead to a reduction of the complexity; hence the general as well as the euclidian
problem is NP-hard. In the following we focus on the Euclidean TSP.

7.4.1 Fitness Landscape

The TSP is also among the first combinatorial optimization problems for which
researchers tried to analyze the search space. In order to define the fitness landscape
for the TSP, an appropriate distance measure is required.

A suitable distance measure for TSP tours appears to be a function that counts the
number of edges different in both tours: Since the fitness of a TSP tour is determined
by the sum of the weights of the edges the tour consists of, the distance between two
tours t1 and t2 can be defined as the number of edges in which one tour differs from
the other. Hence

d(t1,t2) = |{e ∈ E | e ∈ t1∧ e �∈ t2}|. (7.7)

This distance measure has been used by several researchers, including [76, 286, 548,
638]. It has been shown that this distance function satisfies all four metric axioms
[774].

Alternatively, a distance measure could be defined by counting the number of
applications of a neighborhood search move to obtain one solution from the other.
In the case of the 2-opt move, the corresponding distance metric d2−opt is bound by
d � d2−opt � 2d [548].

7.4.1.1 Autocorrelation Analysis

Stadler and Schnabl [847] performed a landscape analysis of random TSP land-
scapes considering different neighborhoods: the 2-opt and the node exchange neigh-
borhood. Their results can be summarized as follows.

For the symmetric TSP, both landscapes (based on 2-opt and node exchange) are
AR(1) landscapes. The random walk correlation function for random landscapes is
of the form

r(s) ≈ exp(−s/�) = exp(−b/n · s), (7.8)

with n denoting the number of nodes/cities of the problem instance and b denoting
the number of edges exchanged between neighboring solutions. Thus, for the 2-opt

7 Memetic Algorithms and Fitness Landscapes in Combinatorial Optimization 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

C
or

re
la

tio
n

Steps

TSP Random Walk Correlation

Edge Exchange
Node Exchange

Fig. 7.5. Random walk correlation functions for the TSP based on edge exchange and node
exchange.

landscape, the normalized correlation length ξ = �/n is 1
2 , for the node re-insertion

landscape ξ is 1
3 , and for the node exchange landscape ξ is 1

4 . This result coincides
with experimentally obtained results that 2-opt local search is much more effective
than local search based on node exchange or node re-insertion [764]. The correlation
functions for edge and node exchange are shown in Fig.7.5.

The formula 7.8 implies that a landscape with a strict 3-opt neighborhood is more
rugged than a landscape with a 2-opt neighborhood. One may conclude that a 2-opt
local search performs better than a 3-opt local search. However, the opposite is true,
since the 3-opt neighborhood is much greater than the 2-opt neighborhood and the
3-opt neighborhood as defined above contains the 2-opt neighborhood. Therefore,
a 3-opt local search cannot perform worse than a 2-opt local search in terms of
solution quality.

7.4.1.2 Fitness Distance Correlation

The fitness distance correlation of local minima of the TSP has been analyzed in
[75, 76] for a single instance and also in [581] for serveral other typical TSP in-
stances. Given the distance measure described above, the results show a strong cor-
relation between tour length and distance to the optimum solution. In fact, the TSP
was the first problem to show the deep valley structure, meaning that better local op-
tima tend to be close to the global optimum. Moreover, the global optimum is found
in a big valley surounded by the other local optima and the local optima concentrate
in a relatively small part of the search space. A radically different structure would be
a random distribution of the local optima in the search space. Hence there would be
no correlation between distance to the optimum and tour length. In Fig.7.6, the fit-
ness distance plot of a typical TSP instance is shown together with a fitness distance
plot for a completely unstructured landscape of the quadratic assignment problem
(QAP). The figure indicates that not all combinatorial problems have a ’nice’ land-
scape as the TSP. The findings also provide an explanation of the success of many
of the TSP heuristics. Many meta–heuristics implicitly exploit the fact that local op-
tima are close to each other. An obviously reasonable strategy is to hop from one

108 P. Merz

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 200 400 600 800 1000

F
itn

es
s

di
ffe

re
nc

e
Δf

Distance to optimum dopt

pr1002.tsp

0
100000
200000
300000
400000
500000
600000
700000
800000

0 10 20 30 40 50 60 70 80

C
os

t d
iff

er
en

ce
 Δ

c

Distance to optimum dopt

tai100a

Fig. 7.6. FDC plots for a TSP instance (left) and a QAP instance (right).

local optimum to the next better one until the global optimum is reached. This is, in
fact, what MAs and ILS do.

7.4.2 State-of-The-Art Meta-Heuristics for the TSP

The TSP has served as a test-bed for new heuristic approaches including evolu-
tionary algorithms (EA) and memetic algorithms. Consequently, many approaches,
both evolutionary and non-evolutionary, have been proposed. Here, we focus on
those approaches which are highly effective and scalable. Euclidean TSP instances
up to a size of 1,000 can be considered as trivial for most algorithms. In fact, these
small problems can usually be solved exactly by Branch & Cut [24] in a few sec-
onds. Therefore, these instances are no longer of interest for heuristics research
on the TSP. For instances up to approx. 30,000 cities, very effective heuristics have
been proposed most of which are based on the powerful Lin-Kernighan (LK) heuris-
tic [524], a variable k-opt local search. An example is Helsgaun’s LK implementa-
tion (LKH) [380].

Only few evolutionary algorithms can compete with LKH. One of the best evolu-
tionary approaches is the EA of Nagata using EAX crossover [647] and 2-opt local
search. This algorithm finds (near) optimal tours up to a size of 33,000 cities, al-
though with a high runtime. Recently, Nguyen et al.[664] have proposed a memetic
algorithm which utilizes a variant of the MPX crossover operator [637] and a Lin-
Kernighan local search variant with 5-opt moves. Results are reported for instances
up to 85,900 cities. The authors claim that their algorithm is more effective than
LKH. Moreover, the authors describe an approach for solving the World TSP (ap-
prox. 2 million cities) by solving and merging subproblems. But results for other
instances in the range from 100,000 to 10 million cities are not reported.

For instances larger than 100,000 cities, only few heuristics have been proposed.
For these instances, the DIMACS TSP implementation challenge [428] lists several
approaches of which the best are based on the LK heuristic: The multi-level algo-
rithm of Walshaw [912] first reduces the size of a TSP instance stepwise and then
applies the (chained) LK heuristic to the smaller problems. The results are inferior to
the results obtained by directly applied chained LK or iterated LK heuristics. These

7 Memetic Algorithms and Fitness Landscapes in Combinatorial Optimization 109

heuristics are based on the principle of iterated local search [533], an evolutionary
heuristic incorporating local search. The idea is to stepwise improve the current best
solution by mutating it and subsequently applying local search. The first iterated lo-
cal search was the iterated Lin-Kernighan (ILK) heuristic by Johnson [427]. Other
variants have been proposed such as the chained Lin-Kernighan heuristic [25, 26].
These ILK heuristics have been applied to instances with up to 10 million cities. The
only algorithm within the DIMACS challenge not using LK as a subroutine and still
being highly effective for large instances is the dynamic programming approach of
Balas and Simonetti [39].

Except for the LKH heuristic, none of the mentioned algorithms provides a lower
bound on the optimum solution. To the best of our knowledge, the only evolution-
ary algorithm computing lower bounds is the one proposed in [556]. However, the
approach deals with instances below 2,400 cities only.

7.4.2.1 An ILS Approach for Very Large TSP Instances

In [590] we have presented an iterated local search approach that simultaneously
improves lower and upper bounds for a TSP instance to provide a gap for the best
solution found. The gap determines the maximum deviation from the optimum so-
lution and therefore provides a quality measure for the obtained TSP tour. The ap-
proach differs from exact algorithms like Branch & Cut [179] in that no efficient
linear programming (LP) solver is required and it differs from approximation al-
gorithms such as PTAS (polynomial time approximation scheme) [27] in that no
general performance guarantee is provided. Instead, the quality is proved for each
instance and a particular run: a final gap between lower and upper bound of 1%
means that the solution found is at most one percent above the optimum (in practice
the real gap is much lower).

Our local search is based on the LK heuristic, hence our iterated local search
is called iterated LK. The general outline of our iterated LK is shown in Alg. 14.
In contrast to other approaches, our ILK incorporates a lower bound computation.

Algorithm 14. The Advanced Iterated Link-Kernighan Heuristic

begin1

C← FindInitialCandidateSet(Instance);2

Tour← Init();3

Tour← LocalSearch(C, Tour);4

C← FindInitialLowerBound(C, TourLength(Tour));5

for iter← 1 to MaxIter do6

Tbest← Tour;7

Tour←Mutate(Tour);8

Tour← LocalSearch(Tour);9

if TourLength(Tour) < TourLength(Tbest) then Tbest← Tour;10

if (iter mod 400) = 0 then C← UpdateLowerBound(C, TourLength(Tbest));11

endfor12

end13

110 P. Merz

This computation is interleaved with the optimization algorithm as can be seen in
the figure: every 400 iterations of the ILK, the lower bound is improved until there
appears to be no more improvement possible (the lower bound computation has
converged). The lower bound computation possibly modifies the candidate edge set,
which is used by the local search to look for improving moves (edge exchanges).

To find initial solutions (Init() in the pseudo code), we use the Quick-Boruvka
heuristic [26, 428], and the initial candidate set (FindInitialCandidateSet(Instance)
in the pseudo code) is based on a subgraph containing the two nearest neighbors for
each quadrant of a city [26]. This candidate set has the property of being connected.

The mutation operator used in the algorithm is non-sequencial four exchange
[524, 588] using a random walk on the candidate set to find edges to be included in
the tour. This operator has been proven to be very effective in conjunction with Lin-
Kernighan local search [26]. The random walk on the candidate edge set assures that
edges with a relatively small length instead of arbitrarily long edges are included.

As mentioned before, we use a variant of the original Lin-Kernighan heuristic
for the local search. Compared to the original LK, we use 3-opt moves as submoves
instead of 2-opt moves at all levels. We do not use backtracking which simplifies
the implementation drastically without affecting the performance. In this aspect our
implementation is similar to LKH.

In order to compare with other state-of-the-art approaches, Table 7.1 shows a
comparison with the eleven best performing algorithms (out of 90) listed on the
DIMACS TSP challenge web page. The summary was produced with the statistics

Table 7.1. Comparison of DIMACS TSP Challenge Results on E1M.0. ILK-PM-.1N de-
notes our ILK with 1 million iterations and ILK-PM-.1N denotes our ILK with 1,2 million
iterations.

% HK Seconds Implementation Reference

0.787 17544.0 ILK-PM-.12N this paper

0.792 77161.6 ILK-NYYY-N ([663])

0.797 16062.0 ILK-PM-.1N this paper

0.804 8694.0 ILK-PM-.1N without LB this paper

0.841 6334.0 ILK-NYYY-Ng ([663])

0.879 42242.5 MLCLK-N [912]

0.888 3480.2 ILK-NYYY-.5Ng ([663])

0.903 19182.7 BSDP-6 [39]

0.903 19503.1 BSDP-8 [39]

0.903 21358.3 BSDP-10 [39]

0.903 19108.1 CLK-ABCC-N.Sparc [25]

0.905 19192.3 CLK-ACR-N [26]

0.910 16008.0 CLK-ABCC-N.MIPS [25]

0.945 20907.6 MLCLK-.5N [912]

7 Memetic Algorithms and Fitness Landscapes in Combinatorial Optimization 111

code from the challenge. Thus the running time reported in the table is normalized
to a DEC Alpha processor with 500 MHz in order to allow a comparison of the
different approaches. The quality is given as the percentage excess over the Held-
Karp (HK) bound. As shown in the table, our algorithm provides a significantly
better tour quality than the other approaches. And it does this in a fraction of time of
the second best approach which is also an ILK implementation. Note that none of the
competitors computes a lower bound. For the 10 million city instance E10M.0, the
quality of our approach is 0.75% over the Held-Karp bound compared to the best
algorithm of the DIMACS challenge which is 1.63% over the Held-Karp bound!
This is due to the fact that the best algorithms for the smaller instances do not scale
as well as our approach. While the runtime of our approach without lower bound
computation grows linearly with the problem size, the runtime of the others clearly
grows faster and and yields in the non-applicability of these algorithms to very large
problem instances (>1 million) whereas our approach is still very successful even
if the lower bound computation is activated.

More details on the algoritm as well as the results can be found in [590].

7.5 Case Study II: The BQP

In the unconstrained binary quadratic programming problem (BQP), a symmetric
rational n×n matrix Q = (qi j) is given, and a binary vector of length n is searched
for, such that the quantity

f (x) = xt Q x =
n

∑
i=1

n

∑
j=1

qi j xi x j, xi ∈ {0,1} ∀ i = 1, . . . ,n (7.9)

is maximized. This problem is also known as the (unconstrained) quadratic bivalent
programming problem, (unconstrained) quadratic zero–one programming problem,
or (unconstrained) quadratic (pseudo-) boolean programming problem [55]. The
general BQP is known to be NP-hard but there are special cases that are solvable in
polynomial time [55]. In [926], it has been shown that there are special cases of the
BQP, which can be solved efficiently with simple EAs, but there are also cases, for
which these EAs have been proven to be ineffective (exponentially growing running
time).

The BQP has a large number of applications, for example in capital budgeting
and financial analysis problems [506, 571], CAD problems [485], traffic message
management problems [300], machine scheduling [10], and molecular conformation
[722]. Furthermore, several other combinatorial optimization problems can be for-
mulated as a BQP, such as the maximum cut problem, the maximum clique problem,
the maximum vertex packing problem and the maximum independent set problem
[414, 707, 708].

There is a close relation between binary quadratic programming and NK-
landscapes: The objective function of the BQP can be decomposed into n functions.

112 P. Merz

The fitness of a BQP solution can thus be rewritten as a sum of functions for each
site, called the fitness contributions fi of site i in the genome:

f (x) =
n

∑
i=1

fi(xi,xi1 , . . . ,xik(i)), (7.10)

fi(x) =
n

∑
j=1

qi j xi x j. (7.11)

Similar to the NK-landscapes defined in [452], the fitness contribution fi of a site
i depends on the gene value xi and of k(i) other genes xi1 , . . . ,xik(i) . While for NK-
landscapes k(i) = K is constant for all i, in the BQP k(i) is defined as the number of
non-zero entries in the i-th column of matrix Q. Hence, the degree of epistasis in a
BQP instance can be easily determined by calculating the density of the matrix Q. It
is defined as the number of non-zero entries divided by the number of total entries
in the matrix. Thus, the density is between 0 and 1, where 0 means no epistasis and
1 maximum epistasis (every gene depends on the values of all other genes).

7.5.1 Fitness Landscape

Since the BQP is binary-coded and local search for the BQP is based on the k-opt
neighborhood as defined as

Nk-opt(x) = {x′ ∈ X |dH(x′,x) � k} (7.12)

where dH denotes the hamming distance between bit strings and X the set of all
bit strings of length n (X = {0,1}n), the landscape considered in the search space
analysis of the BQP is L = (X , f ,dH). The graph of this landscape is a hypercube of
dimension n in which the nodes represent the (candidate) solutions of the problem.
An edge in the graph connects neighboring points in the landscape, i.e. points that
have hamming distance 1.

7.5.1.1 Autocorelation Analysis

Since there are no theoretical results on the autocorrelation function or the random
walk correlation function for the BQP, experiments have been conducted in [591]
to estimate the correlation length of selected landscapes. The instances were taken
from ORLIB [54] and [18, 318]. Here, we summarize the findings: Considering all
selected instances, the quotient of n/� varies in tight bounds: the lowest value for
n/� is 2.36 and the highest is 2.71. Compared to NK-landscapes, this is fairly low
since in the NK-model n/�≈ K + 1. For the instances denoted glov500, the values
are very similar (2.67± 0.04) and thus remain constant independent of the density
of the problem. For the set kb-g, the values for n/� do change with the density of
Q, but the values become smaller with increasing density. This is surprising, since
in the NK-model, the correlation length decreases with increasing epistasis, and the

7 Memetic Algorithms and Fitness Landscapes in Combinatorial Optimization 113

density can be regarded as a measure of epistasis in the BQP. For the set of instances
of size 2500 and a density of 0.1, the values for n/� are constant (about 2.66).

Summarizing, all the instances of the BQP considered here have got a smooth
landscape similar to NK-landscapes with K � 3.

7.5.1.2 Fitness Distance Correlation Analysis

In a FDC analysis, we studied the correlation of fitness (objective f(x)) and distance
to the optimum for local optima with respect to 1-opt local search. The findings
can be summarized as follows. In most cases, the average distance between the
local optima and the average distance to the global optimum (best-known solution)
are very similar. Moreover, the local optima are located in a small region of the
search space: the average distance between the local optima is between a fourth
and sixth of the maximum distance (the diameter) between two solutions in the
search space. For set glov500, the average distance to the optimum is a sixth of the
diameter independent of the density of Q. For set beas2500 the local optima are
even closer to the optimum in relation to the maximum distance of two solutions
in the landscape: the average distance to other local optima is more than a seventh
of the diameter of the landscape. The FDC coefficient varies from -0.56 to -0.81
excluding glov500-4. The FDC coefficient for this instance is -0.31.

In Figure 7.7, some scatter plots are provided in which the distance to the global
optimum is plotted against the fitness difference Δ f = f (xopt)− f (xloc) for each lo-
cal optimum found. The figure indicates that the local optima are even closer to each
other than for smooth NK-landscapes with K = 2, revealing the deep valley/massiv
central property.

7.5.1.3 Advanced Fitness Landscape Analysis

In order to analyze the structure of the basins of attraction more closely, we con-
ducted several experiments for the BQP [583]. For each problem instance, 1000
local optima were generated and mutated 100 times with a specified mutation rate.

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

0 500 1000 1500 2000 2500

F
itn

es
s

di
ffe

re
nc

e
Δf

Distance to optimum dopt

beas2500-1.b

0

0.01

0.02

0.03

0.04

0.05

0.06

0 200 400 600 800 1000

F
itn

es
s

di
ffe

re
nc

e
Δf

Distance to optimum dopt

C2-1024

Fig. 7.7. 1-opt Local Optima FDC plots for a BQP instance (left), an NK-landscape with
K = 2 (right)

114 P. Merz

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250

E
sc

ap
e

ra
te

Steps

BQP: 1-opt Local Optima

kb-g01
kb-g03
kb-g08

50

100

150

200

250

300

350

400

0 50 100 150 200

Ite
ra

tio
ns

 /
E

sc
ap

e

Steps

BQP: 1-opt Local Optima

kb-g01
kb-g04
kb-g08

Fig. 7.8. Basins of Attractions of Local Optima: The escape rate (left) and LS itera-
tions/escape

The number of mutation steps was increased from 1 to n/2 where n denotes the
problem size. Since both problems are binary coded, the number of mutation steps
is defined as the number of bit-mutations executed by the mutation operator.

The BQP instances from [319] denoted kb-g01, kb-g02, . . . , kb-g10, where
the number indicates the density of matrix Q (01 means density 0.1 and 10 denotes
density 1.0), were used in the experiments. All instances have a problem size of
n = 1000. In all cases, 1-opt local search (single bit-flip neighborhood) was used
with the best improvement strategy [582, 589]. Selected results are presented in
Fig. 7.8 (right). The question arises whether there is an optimum mutation rate in
terms of computation costs. At which mutation rate is the number of visited local
optima per time unit maximum? The answer is given in Fig. 7.8 (left). In the figure,
the number of local search iterations per escape is displayed over the number of
mutation steps. For densities greater 0.1, the optimum is around hundred mutation
steps and the optimum approaches 2 steps for density 0.1.

To investigate the properties of random walks starting at local optima we con-
ducted several experiments on the problem instances mentioned above. During the
run of a memetic algorithm, random walks were performed by selecting two parents
A and B and performing a random walk from A to B to simulate recombination as
well as a walk with the same length starting at A in an arbitrary direction to simulate
mutation. Fig. 7.9 shows the results of the random walk analysis for the BQP on
selected instances. Directed random walks have a much higher average fitness than
undirected random walks. As the right of the figure indicates, the fitness difference
is always positive, independent of the distance between the start and end-points of
the random walks. During the whole run of the MA, recombination is clearly su-
perior to mutation since the random walks from one local optimum to the other
produce solutions with much higher fitness than random walks starting at the same
local optima but in arbitrary direction.

As the FDC analysis reveals, BQP landscapes are structured, even with a high
density of matrix Q. Hence, recombination appears to be superior to mutation as the
random walk correlation analysis indicates. However, in [591] it has been shown
that simple recombination schemes are not very effective in MAs for the BQP. The

7 Memetic Algorithms and Fitness Landscapes in Combinatorial Optimization 115

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

0 50 100 150 200 250

F
itn

es
s

Distance

BQP (kb-g01): Random Walks

rec
rw

0

5000

10000

15000

20000

25000

30000

35000

40000

0 50 100 150 200 250 300

F
itn

es
s

D
iff

er
en

ce

Distance

BQP (kb-g01): Random Walks

-50000

0

50000

100000

150000

200000

250000

0 50 100 150 200 250

F
itn

es
s

Distance

BQP (kb-g08): Random Walks

rec
rw

0

20000

40000

60000

80000

100000

120000

0 50 100 150 200 250 300

F
itn

es
s

D
iff

er
en

ce

Distance

BQP (kb-g08): Random Walks

Fig. 7.9. Random Walks Starting from Local Optima of the BQP

reasons become obvious considering the results of the local search escape analysis:
the local optima in the BQP have very large basins of attractions leading to the
fact that after recombination and local search, one of the parent local optima is
rediscovered very often. As a consequence, additional techniques are required to
prevent this from happening, as shown in [591].

7.5.2 State-of-the-Art Meta-Heuristics for the BQP

Several (meta–)heuristic approaches have been proposed for the BQP. In the follow-
ing, we briefly review effective heuristic algorithms capable of finding optimum/best-
known or very good near-optimum solutions for the BQP.

Glover, Kochenberger, and Alidaee [319] have proposed a tabu search heuristic
for instances of up to 500 variables. Their method consists of a strategic oscillation
scheme that alternates between constructive and destructive phases.

Lodi, Allemand, and Liebling [532] proposed a heuristic based on an evolution-
ary algorithm for the same problem set studied by Glover et al. Their heuristic is
combined with the local search algorithm that is based on the constructive and de-
structive phases of the tabu search in [319]. Their crossover operator is similar to
uniform crossover [864], utilizing the MinRange algorithm, which is based on the
property by Pardalos and Rodgers [706].

Alkhamis, Hasan, and Ahmed proposed a simulated annealing algorithm [11].
Unfortunately, only small problem instances with up to 100 variables were inves-
tigated. In [55], Beasley has provided larger BQP test problems with up to 2500

116 P. Merz

variables as new test problems of the ORLIB [54]. Beasley includes the best-known
solutions for each of the provided instances found by tabu search and simulated
annealing.

In our genetic local search algorithm [586], a simple local search (called 1-opt,
see below) and a variant of uniform crossover, HUX [246], were employed. For sev-
eral large instances of [55], they provided new best-known solutions and have shown
that their algorithm outperforms the two alternative heuristics reported by Beasley.
Furthermore, we developed a greedy heuristic and two local search heuristics called
1-opt and k-opt [589]. We showed that in particular the k-opt local search is ca-
pable of finding high-quality solutions even for the large-scale problem instances,
and they also proposed that these heuristics are well suited as components for meta-
heuristics, such as MA.

Katayama and Narihisa [446] proposed a new simulated annealing-based heuris-
tic with a reannealing process. The approach was tested on the large instances rang-
ing from 500 to 2500 variables contained in the ORLIB. Although simulated an-
nealing is based on the simple 1-opt neighborhood structure, better average solution
results for the large instances were found as compared to the other heuristics: our
genetic local search et al. [586] and the heuristics by Beasley [55]. Moreover, the
heuristic was considerably faster than the others, and new best-known solutions for
several large instances were reported.

7.5.3 A Memetic Algorithm Using Innovative Recombination

In [591], we proposed a memetic algorithm using a new recombination operator
that takes the properties of the search space of the BQP into account. Although the
landscape is correlated/structured, recombination operators such as HUX or simple
uniform crossover are not that effective due to the large basins of attraction of the
local optima, as stated above. This is even more true when a powerful variable k-opt
local search is used.

The outline of the MA is provided in Alg. 15. The population is initialized (Init())
with the randomized greedy heuristic we proposed in [589]. The local search used
is a randomized k-opt local search algorithm proposed in [447, 448], which is based
on the k-opt local search proposed in [589]. Similar to the Lin-Kernighan algorithm
for the TSP [524], the basic idea of the heuristic is to find a solution by flipping a
variable number of k bits in the solution vector per iteration. In each step, a sequence
of n solutions is generated by flipping a random bit with positive gain or the bit with
the highest associated gain. Furthermore, a candidate set is used to assure that each
bit is flipped no more than once. The best solution in the sequence is accepted as the
new solution for the next iteration.

To minimize the number of times a local optimum is rediscovered, we have pro-
posed a new variation operator. The basic idea is to utilize a simple local search for
introducing new alleles, i.e. alleles not contained in both parents. The crossover can
be regarded as innovative, since new alleles are introduced based on the associated
gain in fitness. Hence the name innovative variation. The operator works as follows:

7 Memetic Algorithms and Fitness Landscapes in Combinatorial Optimization 117

Algorithm 15. BQP-MA

begin1

foreach S in Population do S← LocalSearch(Init());2

while not terminated do3

Offspring← {};4

for i← 0 to crossovers do5

A← Select(Population);6

B← Select(Population);7

C← LocalSearch(Recombine(A, B));8

Offspring← OffSpring + C;9

endfor10

Population← Select(Population, Offspring);11

if Converged(Population) then12

foreach S in Population\Best do S← LocalSearch(Mutate(S));13

endif14

endw15

end16

In the first step, the common and the non-common bits of the parents are identified.
Then, the contents of parent Ia are copied to the offspring. Variation is now achieved
by alternately flipping non-common bits and common-bits: In a loop, a randomly se-
lected non-common bit is flipped with a positive associated gain, if there is at least
one such non-common bit. The common bit with the maximum associated gain is
flipped afterwards, even if the gain is negative. If a bit has been flipped, it is removed
from the set it was contained in (either the common or non-common bit set). The
loop is repeated n times where n is the number of non-common bits.

Mutation is only applied when the population is converged. In such a case, we
perform a diversification/restart strategy, which is borrowed from [246], in order di-
versity the population by moving to other points of the search space if no new best
individual in the population was found for more than 30 generations. In response
to this requirement, the individuals except for the best one in the population are
mutated by flipping randomly chosen n/3 bits for each individual of length n. Af-
ter that, each of the mutated individuals is improved by the randomized k-opt local
search to obtain a renewal set of local optima and the search is started again with the
new, diverse population. The performance of our MA is shown in Table 7.2. We have
tested our algorithm on several benchmark instances from the literature. The first set
kb-g consists of 10 instances of size n = 1000 that have been provided by Kochen-
berger and have been used in the performance evaluation of scatter search [18]. The
densities of instances in the problem set are between 0.1 and 1.0. The last two sets
beas1000 (n = 1000) and beas2500 (n = 2500) were first studied by Beasley [55],
each of which consists of ten instances with dens(Q) = 0.1.

In [591], a detailed comparison with other approaches for the BQP has been
made. Summarizing, The MA approach provides a higher average solution qual-
ity than other approaches. CPU times have not been reported for all approaches or
are not directly comparable to our results. However, our MA is superior or at least

118 P. Merz

Table 7.2. Computational results of the MA with innovative variation incorporating the ran-
domized k-opt local search algorithm for test problem instances from the literature.

best MA with Innovative Variation

Instance dens(Q) known best avg (quality %) b/30 t1/s (gens)

kb-g01 0.1 131456 131456 131456.0 (0.000000) 30 6.1 (6)

kb-g02 0.2 172788 172788 172788.0 (0.000000) 30 12.8 (9)

kb-g03 0.3 192565 192565 192565.0 (0.000000) 30 11.4 (4)

kb-g04 0.4 215679 215679 215679.0 (0.000000) 30 42.0 (23)

kb-g05 0.5 242367 242367 242367.0 (0.000000) 30 15.6 (5)

kb-g06 0.6 243293 243293 243293.0 (0.000000) 30 69.4 (30)

kb-g07 0.7 253590 253590 253590.0 (0.000000) 30 45.7 (13)

kb-g08 0.8 264268 264268 264268.0 (0.000000) 30 40.2 (12)

kb-g09 0.9 262658 262658 262618.0 (0.015219) 25 140.1 (40)

kb-g10 1.0 274375 274375 274335.4 (0.014423) 15 143.9 (41)

beas1000-1 0.1 371438 371438 371438.0 (0.000000) 30 6.7 (9)

beas1000-2 0.1 354932 354932 354932.0 (0.000000) 30 7.7 (10)

beas1000-3 0.1 371236 371236 371236.0 (0.000000) 30 5.8 (5)

beas1000-4 0.1 370675 370675 370675.0 (0.000000) 30 6.6 (7)

beas1000-5 0.1 352760 352760 352760.0 (0.000000) 30 11.8 (20)

beas1000-6 0.1 359629 359629 359629.0 (0.000000) 30 11.0 (17)

beas1000-7 0.1 371193 371193 371193.0 (0.000000) 30 9.1 (12)

beas1000-8 0.1 351994 351994 351994.0 (0.000000) 30 28.1 (50)

beas1000-9 0.1 349337 349337 349337.0 (0.000000) 30 6.1 (6)

beas1000-10 0.1 351415 351415 351415.0 (0.000000) 30 7.3 (9)

beas2500-1 0.1 1515944 1515944 1515944.0 (0.000000) 30 59.9 (15)

beas2500-2 0.1 1471392 1471392 1471357.8 (0.002322) 26 165.2 (60)

beas2500-3 0.1 1414192 1414192 1414183.1 (0.000629) 29 87.8 (30)

beas2500-4 0.1 1507701 1507701 1507701.0 (0.000000) 30 42.2 (9)

beas2500-5 0.1 1491816 1491816 1491816.0 (0.000000) 30 76.1 (29)

beas2500-6 0.1 1469162 1469162 1469162.0 (0.000000) 30 78.5 (26)

beas2500-7 0.1 1479040 1479040 1479040.0 (0.000000) 30 92.2 (30)

beas2500-8 0.1 1484199 1484199 1484199.0 (0.000000) 30 47.1 (10)

beas2500-9 0.1 1482413 1482413 1482413.0 (0.000000) 30 140.0 (70)

beas2500-10 0.1 1483355 1483355 1483336.9 (0.001218) 28 108.6 (43)

comparable to other state of the art approaches including tabu search and scatter
search. In [700], a multi-start tabu search has been proposed that appears to be sim-
ilarly effective. Again, a direct comparison is not easy. The author, however, fails
to compare with the results from [591]. Instead, older results are considered from
[586].

7 Memetic Algorithms and Fitness Landscapes in Combinatorial Optimization 119

7.6 Conclusion

In this chapter, we have discussed fitness landscape analysis as suitable methodol-
ogy for discovering search space properties relevant for the development of memetic
algorithms. We have shown that some combinatorial optimization problems have
structured landscapes that have a deep value/massive central structure. This struc-
ture is known to be a reason why MAs perform well on certain combinatorial prob-
lems. We have argued that the results from the fitness landscape analysis can be
used to design local search (autocorrelation analysis) or can help in deciding to use
mutation based or recombination variation (fitness distance analysis). In two case
studies, we have demonstrated that MAs are highly effective and belong to state-
of-the-art meta-heuristics. For the binary quadratic programming problem, we have
shown that an advanced fitness analysis can help in designing a recombination op-
erator by assuring that it has a high chance to leave the basin of attraction of the
current local optima. This innovative variation operator increases the effectiveness
of the MA considerably.

	Memetic Algorithms and Fitness Landscapes in Combinatorial Optimization

	Introduction
	MAs in Combinatorial Optimization
	Combinatorial Optimization
	MA Outline
	Related Meta-Heuristics

	Why and When MAs Work
	The Concept of Fitness Landscapes
	NK-Landscapes
	Analysis of Fitness Landscapes

	Case Study I: The TSP
	Fitness Landscape
	State-of-The-Art Meta-Heuristics for the TSP

	Case Study II: The BQP
	Fitness Landscape
	State-of-the-Art Meta-Heuristics for the BQP
	A Memetic Algorithm Using Innovative Recombination

	Conclusion

