
Chapter 13
Multiobjective Memetic Algorithms

Andrzej Jaszkiewicz, Hisao Ishibuchi, and Qingfu Zhang

13.1 Introduction

Multiple conflicting points of view, which are often taken into account in real life
applications, naturally result in a multiple objective optimization problem (MOP)
[848]. In order to find the best compromise solution of a MOP, or a good approx-
imation of it, Multiobjective Optimization (MOO) methods need some preference
information from a decision maker. According to when and how the preference in-
formation is used in the solution procedure, MOO methods can be classified as
either methods with a priori, a posteriori, or progressive (interactive) articulation of
preferences [400].

In recent years, the demand for new applications and the increasing computing
power have led to growing interest in computationally hard multiobjective prob-
lems, e.g. nonlinear or combinatorial optimization problems. These problems arise
in many areas such as scheduling, timetabling, production facilities design, vehicle
routing, telecommunication routing, investment planning and location. Problems of
this kind are difficult to solve even in the single objective case. Encouraged by the
success of metaheuristics in single-objective optimization (see e.g. [694]), much
effort has been made in developing MOO metaheuristics.
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Traditional MOO methods usually assume that an underlying single-objective
exact solver is available. This solver is used to solve a series of substitute single-
objective optimization problems sequentially. The objective functions of these sub-
stitute optimization problems could be an aggregation function of the individual
objectives of the MOP in question. Their optimal solution can be Pareto optimal
solutions of the MOP under some conditions. However, for many hard MOPs, no
efficient exact solvers are available. One can use a single-objective metaheuristic
instead of an exact solver. A single run of the metaheuristic can generate a single
approximate Pareto-optimal solution and therefore many runs are required to gener-
ate multiple solutions. This approach is simple but not very efficient.

Many dedicated multiobjective metaheuristics have recently been developed
[131, 196, 418]. These methods aim at generating in a single run a set of solu-
tions for approximating the whole Pareto optimal front. The set of solutions could
be then presented to the decision maker (DM) to allow it to choose the best compro-
mise solution in a posteriori or interactive manner [422].

A multiobjective metaheuristic is often a modified version of a single objective
heuristic method. It is natural to expect that the best results may be achieved by
adapting the most efficient single objective methods to the multiobjective problems.
Memetic algorithms proved to be one of the most efficient metaheuristic paradigms
for single objective optimization [618]. For this reason, many attempts have been
made to extend memetic algorithms to multiobjective optimization.

The purpose of this review is to present and discuss basic concepts in multiob-
jective memetic algorithms and to characterize some state-of-the-art algorithms. In
the next section, we introduce some basic definitions in MOO. In the third section,
we discuss the main ideas in multiobjective memetic algorithms. The fourth section
presents several typical multiobjective memetic algorithms. Some specific imple-
mentation issues are discussed in the fifth section. In the last section we discuss
some further research topics in this area.

13.2 Basic Definition and Concepts

In this section, we introduce some basic concepts and aggregation functions in mul-
tiobjective optimization.

13.2.1 Basic Concepts

A multiobjective optimization problem (MOP) can be stated as follows:

maximize F(x) = ( f1(x), . . . , fm(x)) (13.1)

subject to x ∈Ω

where Ω is the decision space, F : Ω → Rm consists of m real-valued objective
functions. Rm is called the objective space. The attainable objective set is defined
as the set {F(x)|x ∈Ω}.
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Ω can be a subset of a base set S and often be described by several constraints
C1, . . . ,Ck. i.e.

Ω = {x ∈ S|x satisifies all the constraints C1, . . . ,Ck}. (13.2)

In this case, Ω is called the feasible solution space and any solution in Ω is a feasible
(candidate) solution. A solution in S is infeasible if it is not in Ω , in other words, it
violates at least one constraint.

If x ∈ Rn, all the objectives are continuous and Ω is described by

Ω = {x ∈ Rn|h j(x) � 0, j = 1, . . . ,k}, (13.3)

where h j are continuous functions, we call (1) a continuous MOP. If Ω is a finite or
countably infinite set, then (1) is a combinatorial MOP.

Domination is widely used to compare different solutions in multiobjective opti-
mization.

Definition 13.1. Let u,v∈ Rm, u is said to dominate v if and only if ui � vi for every
i ∈ {1, . . . ,m} and u j > v j for at least one index j ∈ {1, . . . ,m}1.

Domination defines a strict partial ordering in the objective space- not any two vec-
tors are comparable based on domination. For example, (1,0) and (0,1) do not
dominate each other.

Definition 13.2. Let x,y ∈Ω , x is said to dominate y if and only if F(x) dominates
F(y).

Obviously, a rational decision maker prefers x to y if x dominates y.

Definition 13.3. x∗ ∈Ω is a Pareto optimal solution and F(x∗) is a Pareto optimal
vector to (13.1) if no other solution in Ω can dominate x∗. The set of all the Pareto
optimal solutions is called the Pareto optimal set (PS) and the set of all the Pareto
optimal vectors is the Pareto front (PF).

We should point out that the above definition refers to the global optimality. x is
called locally Pareto optimal if it cannot be dominated by any solutions in a neigh-
borhood of x.

In many real-life applications of multiobjective optimization, an approximation
to the PF is required by a decision maker for selecting the final preferred solution.
Most MOPs may have many or even infinite Pareto optimal vectors. It is very time-
consuming, if not impossible, to obtain the complete PF. On the other hand, the
decision maker may not be interested to have an unduly huge number of Pareto
optimal vectors to deal with due to overflow of information. Therefore, many multi-
objective optimization algorithms are to find a manageable number of approximate
Pareto optimal solutions to approximate the Pareto set or Pareto front. Researchers
and practitioners are often more interested in approximating the Pareto front than

1 This definition of domination is for maximization. All the inequalities should be reversed
if the goal is to minimize the objectives in (13.1).
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the Pareto set because the objective space is of lower dimension and it is easy to
visualize an approximate Pareto front. However, recent work has shown that ap-
proximation of the Pareto set is also very important.

Definition 13.4. Given a set of solutions P, x ∈ P is called a nondominated solution
in P if no solution in P can dominate x.

Many multiobjective metaheurstics are based on Pareto dominance. These methods
often select nondominated solutions from a set of solutions.

Definition 13.5. zid = (z1, . . . ,zm) is called the ideal objective vector if zi is the max-
imal function value of fi(x) over Ω .

Definition 13.6. znadir = (z1, . . . ,zm) is call the nadir objective vector if

zi = in f{yi|(y1, . . . ,ym) ∈ PF} (13.4)

Ideal objective vectors and nadir vectors in the objective space are the upper and
lower bounds of the PF, which are of interest since they are useful for determin-
ing the range of the Pareto front and for normalizing the objectives so that all the
objectives in the same range. A typical normalization is:

fi(x)← fi(x)− znad
i

zi− znad
i

(13.5)

It might be not practical to obtain the exact ideal and nadir vectors, one can substitute
them by approximate ones.

13.2.2 Aggregation Functions

In traditional optimization, a widely-used strategy for dealing with a MOP is to
aggregate all the individual objective functions and then optimize the aggregation
function. In the following, we introduce three popular aggregation approaches.

13.2.3 Weighted Sum Approach

This approach considers a convex combination of the different objectives. Let λ =
(λ1, . . . ,λm)T be a weight vector, i. e., λi � 0 for all i = 1, . . . ,m and ∑m

i=1λi = 1.
Then the aggregated function is

gws(x|λ ) =
m

∑
i=1

λi fi(x). (13.6)

where we use gws(x|λ ) to emphasize that λ is a coefficient vector in this objective
function while x is the variables to be optimized. A maximal solution of a weighted
sum function is Pareto optimal to (13.1) if all the weights are positive. Moreover,
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for any Pareto optimal solution x∗ to a convex MOP, there exists a weight vector
such that x∗ is the maximal solution to (13.6). However, for a non-convex MOP,
there may exist a Pareto optimal solution which is not a maximal solution to any
weighted sum function.

13.2.4 Tchebycheff Approach

In this approach, the aggregation function to be minimized is in the form

gte(x|λ ,z∗) = max
1�i�m

{λi(−z∗i − fi(x))} (13.7)

where z∗ is the ideal point or a point dominated by the ideal point. Each Tchebycheff
aggregation function has at least one global minimum which is Pareto optimal to
(13.1). Under some mild conditions for each Pareto optimal point x∗, there exists a
weight vector λ such that x∗ is an optimal solution of (13.7). Therefore, one is able
to obtain different Pareto optimal solutions by altering the weight vector.

One weakness with this approach is that its aggregated function could be flat in
some regions. To overcome it, the following aggregated function can be used:

gte(x|λ ,z∗)+ρgws(x|λ ) (13.8)

Aggregation methods are still a very active research topic in traditional optimization.
The readers interested in more detail about aggregation methods may wish to consult
[233, 241, 599].

13.3 Adaptation of Memetic Algorithms for Multiobjective
Optimization – Basic Concepts

Memetic algorithms have to evaluate or compare a set of solutions at each generation
for determining their contribution to the next generation. In the single objective case,
several different evaluation functions or mechanisms have been used and studied in
solution evaluation, the objective function itself, however, is the most natural and
widely used evaluation function [618]. In multiobjective optimization, no such a
natural choice for the evaluation exists. The evaluation mechanism is one of the
major issues in the design of multiobjective memetic algorithms. A good evaluation
mechanism should guide the solutions generated to

• approach the Pareto front,
• and at the same time disperse over all (or some desired) regions of the Pareto

front.

Two main classes of evaluation mechanisms have been proposed for multiobjective
memetic algorithms, i.e., mechanisms based on the dominance relation and mech-
anisms based on aggregation functions. Of course, these two mechanisms could be
hybridized together. Below we discuss these two evaluation mechanisms.
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13.3.1 Dominance-Based Evaluation Mechanisms

As pointed out in Section 2, the dominance relation defines a partial order in the set
of all feasible solutions. All the Pareto-optimal solutions are the best with respect to
this order. Therefore, the use of dominance relation in evaluation mechanisms cre-
ates a selection pressure towards the Pareto front. Dominance relation alone leaves,
however, many pairs of solutions incomparable. For this reason, dominance relation
on its own may not be able to define a single best solution in a neighborhood or in
a tournament. Thus, multiobjective memetic algorithms need additional evaluation
mechanisms with dominance relation to distinguish different solutions.

Probably, the most popular dominance based evaluation mechanism is Pareto
ranking, which was originally suggested by Goldberg [325] and has been widely
used in multiobjective evolutionary algorithms (see e.g.[131, 196]). In this mech-
anism, the dominance relation is used to rank all the solutions in the current pop-
ulation. Different algorithms may use slightly different versions of Pareto ranking.
Srinivas and Deb [844] used the most direct implementation of the Goldberg’s idea
in their Nondominated Sorting Genetic Algorithm (NSGA) [199]. It assigns rank
1 to all solutions nondominated in the current population. Then, the nondominated
solutions are temporarily removed from the population and the next rank is assigned
to the solutions nondominated in the remaining part of the population. The process
is continued until all solutions in the population are ranked.

Dominance relation may also be used to guide local search-based memetic algo-
rithms. For example, Knowles and Corne [472, 473] proposed a greedy local search
method mainly based on dominance relation. Their idea is to accept a new neigh-
borhood solution if it dominates the current solution. In population-based Pareto
local search [21, 50, 705], the neighborhood of each solution of the current popula-
tion is explored, and if no solution of the population weakly dominates a generated
neighbor, the neighbor is added to the population.

An obvious advantage of dominance relation is its independence on any mono-
tonic transformation of objective functions. Furthermore, particular dominance-
based evaluation mechanisms are usually very simple and have no or few param-
eters. For example, Pareto local search is a fully parameter-free method.

Dominance-based evaluation mechanisms may have, however, some significant
disadvantages. Although dominance relation assures the pressure towards the Pareto
front, it does not necessarily assure the dispersion of the solutions over all regions
of the Pareto front. Thus, the basic method often needs to be extended by intro-
ducing some additional dispersion mechanisms. For example, several researchers
[276, 472, 844] suggested the use of fitness sharing to improve Pareto ranking. The
idea is to penalize a solution if it is too close, either in the objective or in the decision
space, to some other solutions in the current population. Note that many fitness shar-
ing techniques use some kind of distance measures in the objective space. Hence,
the techniques are not invariant of scaling and more general of monotonic transfor-
mation of objective functions.

Another disadvantage of dominance-based evaluation mechanisms is that the se-
lection pressure decreases with the growing number of objectives. The larger the
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number of objectives is, the lower the chance that one of two solutions dominates
the other. In particular, a population of a multiobjective memetic algorithm may
easily contain mainly or only mutually non-dominated solutions which are incom-
parable based on the dominance relation.

Increasing the number of objectives may also deteriorate the efficiency of algo-
rithms based purely on the dominance relation. For example, in the case of Pareto
local search, the number of neighborhood solutions to be accepted may become very
large, and the size of the population to be maintained may grow enormously.

Furthermore, efficient single-objective local search algorithms usually use a
number of advanced, problem-specific speed-up techniques based on the proper-
ties of the objective function. Such techniques often cannot be directly adapted to
dominance-based mechanisms. There is still very little work that applies speed-up
techniques in local search algorithms based on dominance relations [542].

13.3.2 Aggregation Function-Based Evaluation Mechanisms

Evaluation of new solutions with the use of Aggregation functions is another typi-
cal evaluation mechanism. Aggregation functions have well-established theoretical
properties as tools for generating Pareto-optimal solutions in traditional MOO (see
section 2). Thanks to these properties of Aggregation functions, their use also in-
duces a pressure towards the Pareto front. Of course, a single Aggregation function
would guide a metaheuristic towards a single Pareto solution. This drawback could
be, however, overcome by the use of multiple Aggregation functions defined by vari-
ous weight vectors. For example, Serafini [805] used the mechanism of random walk
to modify the weights randomly in each iteration. Ulungu et al. [897] and Zhang
and Li [957] used a predefined set of well dispersed weight vectors. Czyzak and
Jaszkiewicz [696] and Hansen [358] modified the weights deterministically in each
iteration in order to obtain a form of repulsion between a population of solutions,
Hajela and Lin [350] allowed the weights to evolve during the search. Ishibuchi
and Murata [409] and Jaszkiewicz [419] generated weight vectors randomly in each
iteration.

An important advantage of Aggregation functions-based evaluation mechanisms
is the fact that by the use of various weight vectors they naturally assure dispersion
of the search over all regions of the Pareto front. Thus, no additional dispersion
mechanisms like the fitness sharing are needed. Another advantage of such mecha-
nisms is that many speed-up techniques may easily be used in local search based on
Aggregation functions.

A disadvantage of Aggregation functions-based evaluation mechanisms is their
dependence on monotonic transformations of objective functions. A simple change
of units in one objective may significantly deteriorate the algorithm performance. It
is thus very important to assure that all the objectives take their values in comparable
ranges. It may be achieved with the use of normalized objective values (see section
2). Some methods, e.g. Jaszkiewicz’s MOGLS [420], perform automatic scaling of
objectives.
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According to the properties mentioned in section 2, weighted Tchebycheff and
composite Aggregation functions have the advantage over linear Aggregation func-
tions of being able to generate all Pareto optimal solutions. Note, however, that the
properties concern only optimal solutions of the Aggregation functions. A subop-
timal solution of a linear Aggregation function found by a metaheuristic may ap-
pear to be a nonsupported Pareto optimal solution. Some experiments indicated that
the use of linear Aggregation functions may yield better results for some particular
problems (see e.g. [359, 419]). Nevertheless, weighted Tchebycheff or composite
Aggregation functions should still be considered as the first choice for Aggregation
functions-based evaluation mechanisms.

13.3.3 Problem Landscapes in Multiobjective Optimization

Intuitively, a problem (fitness) landscape is a graph where solutions play the role
of vertices and edges indicate the neighborhood relation or a distance measure in
the decision space between solutions [581, 618, 762]. In the single-objective case,
it is labeled on vertices with real values of the fitness function. In the multiobjective
case, it is labeled with vectors of real values.

A simple conclusion of the No free lunch theorem [940] is that no optimization
algorithm may work for all possible landscapes. The properties of landscapes may
be analyzed e.g. by the distance between local optima [76], fitness-distance corre-
lation [581] or scatter plots of fitness versus distance. Several authors observed that
single-objective memetic algorithms perform very well for problems with the ’big
valley’ property. This property means that there is a correlation between quality of
solutions and their distance, i.e. good solutions tend to be located close according
to some distance measure in the decision space.

Landscape analysis of multiobjective problems has not achieved significant at-
tention yet. Very few such studies have been performed [276, 357]. However, it is
natural to expect that (approximately) Pareto-optimal solutions do not need to be
close in the decision space. For example, Pareto-optimal solutions corresponding
to optima of particular objectives may be very distant in the decision space if the
objectives are independent or conflicting. On the other hand, some solutions close
in the objective space may also be close in the decision space [357].

This observation puts some new light on the typical statement that ”population-
based methods are ideal candidates for solving multiobjective problems” (see e.g.
[196], Preface). In fact, single-objective population-based methods are rather de-
signed to converge towards the vicinity of good solutions, and some natural conver-
gence mechanism, e.g. genetic drift [328], may be beneficial in the single-objective
case. The same convergence may, however, cause a multiobjective population-based
method converge to a sub-region of the Pareto front only. Thus, dispersion mech-
anisms that are ’side’ elements of single-objective algorithms may become crucial
in the multiobjective case. Indeed, some studies indicate that various population-
based methods have problems with assuring proper dispersion of solutions even if
the convergence to the Pareto front is very good [420].
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Furthermore, the ’big valley’ property and the convergence of the population well
explain the effectiveness of recombination operators. The recombination constructs
a new solution by combining properties of the parents, and so, creating a solution
being close to the parents and other good solutions. This offspring solution may be
then efficiently improved by local search. In fact, some very successful recombina-
tion operators such as respectful operators [581] are directly designed to preserve
properties common to both parents.

In multiobjective cases, the population may contain some very distant solutions
with few or no common properties. Recombination of such solutions does not need
to produce good offspring and may deteriorate efficiency and effectiveness of the
whole algorithm. Thus multiobjective memetic algorithms may require some spe-
cialized mechanisms for selection of promising parents for recombination [412].

13.3.4 Archive of Potentially Pareto-optimal Solutions

In the single-objective case, the outcome of the algorithm should be the best solu-
tion found, even if in some cases it is not contained in the final population. In the
multiobjective case, an analogue of the single best solution is the set of potentially
Pareto-optimal solutions, i.e. solutions that are not dominated by any other solutions
generated by the algorithm. Some initial population-based multiobjective memetic
algorithms did not take this fact into account and assumed that their outcome is the
final population. This means that many potentially Pareto-optimal solutions could
have been lost. Thus, it is natural to maintain an additional archive of potentially
Pareto-optimal solutions. Please note, however, that the size of this archive may
become enormously large and its maintenance may become the main factor influ-
encing the efficiency of the algorithm. Thus some techniques for reduction of the
archive size have been proposed.

13.3.5 Evaluation of Multiobjective Memetic Algorithms

With the increasing number of multiobjective memetic algorithms and other meta-
heuristics, the issue of their evaluation and comparison becomes of crucial impor-
tance. Although full evaluation of single objective metaheuristics is already a com-
plicated task that involves many aspects like quality of results and computational
efficiency, some difficulties are specific to the multiple objective case. In the sin-
gle objective case, when two algorithms generate two solutions, their comparison
is straightforward. Either one of the solutions is better or they are equally good on
the single objective function. In the multiobjective case we are dealing with evalua-
tion and comparison of sets of solutions from the point of view of multiple criteria.
In some cases, two sets of potentially Pareto-optimal solutions may be compared
based on the dominance relation only with the use of so-called set outperformance
relations [421, 970]. For example if all solutions in one set are covered (are domi-
nated or equal) by solutions from another set the latter should be considered better.
These relations leave, however, many pairs of sets incomparable. Thus, a number of
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quality indicators have been proposed. The quality indicators, usually, assign a sin-
gle real value to each set. It is natural to expect that the proper quality indicators
should properly rank sets comparable with set outperformance relations. Several
quality indicators like hypervolume or R-indicator have this property. For detailed
analysis of this issue see e.g. [421, 969, 970].

13.4 Examples of Multiobjective Memetic Algorithms

13.4.1 MOGLS of Ishibuchi and Murata

Ishibuchi and Murata [409] proposed multiobjective genetic local search (MOGLS),
which is the first well-known multiobjective memetic algorithm. Their MOGLS uses
a weighted sum fitness function for parent selection and local search. Pareto domi-
nance is used only for maintaining an archive population. The archive population is
updated at every generation so that it includes all non-dominated solutions among
examined ones during the current execution of MOGLS. At each generation, the
weight vector is randomly updated when a pair of parents is selected from the cur-
rent population by roulette wheel selection based on the weighted sum fitness func-
tion. An offspring is generated from the selected pair of parents. The current weight
vector is used for local search from the generated offspring. When the next pair
of parents is selected, the weight vector is randomly updated. In this manner, the
next population is generated by iterating random weight update, parent selection,
crossover, mutation and local search. Some non-dominated solutions in the archive
population are randomly selected and added to the current population as elite indi-
viduals. MOGLS of Ishibuchi and Murata [409] has some good properties such as
the use of archived non-dominated solutions as parents and the use of aggregation
functions with multiple weight vectors. Its performance, however, is not so high be-
cause its implementation is too naive. Its performance can be easily improved by
a number of simple tricks such as the increase in the selection pressure for parent
selection, the choice of a good starting solution for local search with the current
weight vector, and the specification of a good balance between genetic search and
local search [409, 410].

13.4.2 M-PAES

Memetic Pareto Archived Evolution Strategy (M-PAES) method proposed by
Knowles and Corne [472, 473] is a memetic algorithm based fully on the dominance
relation. The method is composed of two sequential phases - local search phase and
recombination phase. In the local search phase the local search is independently ap-
plied to each starting solution. The local search is based on the dominance relation.
The new neighborhood solution is rejected if it is dominated by the current solution,
and accepted if it dominates the current solution. If the two solutions are mutually
nondominated, the two solutions are compared with a local archive of potentially
Pareto-optimal solutions and the one from a less crowded region is accepted. This
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acceptance rule is an additional dispersion mechanism. In recombination phase, ran-
domly selected solutions from the current population created in local search phase
and solutions from global archive of potentially Pareto-optimal solutions are re-
combined. The acceptance criterion of the offspring again takes into account both
dominance relation and location in the more or less crowded region of the global
archive. Although the method uses some dispersion mechanism in both phases, the
experiment in [420] indicated that the method may be strongly affected by genetic
drift.

13.4.3 NSGA-II with LS

Deb and Goel [198] proposed an algorithm in which local search is used to im-
prove results of a standard multiobjective evolutionary algorithm. The method com-
bines dominance-based and aggregation functions-based guiding mechanisms. The
method starts by using Nondominated Sorted Genetic Algorithm-II NSGA-II that
uses recombination and some dominance-based elitist dispersion mechanism. The
algorithm is fully based on the dominance relation. Pairs of solutions are selected
from the current population by binary tournament selection based on the dominance
relation and a crowding measure. In the second phase each solution generated by
NSGA-II is a starting point for local search. The local search is based on weighted
linear aggregation functions. The weight vector is set automatically depending on
the location of the solution in comparison to other solutions. Intuitively, solutions
located close to the best value on a given objective will have a large weight value
corresponding to this objective. In other words, each solution is pushed in the di-
rection in which it is already good. The authors report that the hybrid approach
improves performance of NSGA-II on a number of engineering design problems.

Cheng et al. [125] also proposed a multiobjective memetic algorithm based on the
NSGA II method [199]. In each generation of NSGA-II they apply local search to
just one potentially Pareto-optimal solution. To choose this solution a weighted lin-
ear aggregation function is drawn at random. Then 2-tournament based on the cur-
rent aggregation function is used to select the single solution to which local search
is applied. The method is applied to the multiobjective job shop scheduling problem
on which the method performs better than a benchmark non-memetic evolutionary
algorithm.

Garret and Dasgupta [304] hybridized NSGA II with a variant of tabu search for
the multiobjective quadratic assignment problems. They studied the influence of the
length of tabu search runs and noticed that with increasing number of objectives it
becomes more beneficial to perform more short runs.

13.4.4 MOGLS of Jaszkiewicz

Jaszkiewicz has proposed a multiobjective genetic local search (MOGLS) method
based on the aggregation functions guiding mechanism [419]. Alike the MOGLS of
Ishibuchi and Murata a random weight vector of the aggregation function is drawn in
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each iteration. In a single iteration, two solutions are recombined and local search,
or, more generally, a specialized heuristic, is applied to the offspring. The local
search optimizes the current aggregation function. The random selection of weight
vectors assures dispersion over all regions of the Pareto front. In each iteration, the
search is pushed in a different direction but always towards the Pareto front. The
method uses a relatively large population of solutions and some effort is made to
define its size automatically. The solutions for recombination are also drawn based
on the current aggregation function. In the original version parents are drawn at ran-
dom from among some (e.g. 20) solutions being the best on this function. Thus only
solutions being very good from the point of view of the current aggregation function
could be recombined. This technique gives a high chance of constructing a new solu-
tion that performs well on the same function. In the improved version called Pareto
memetic algorithm [421], this selection was based on the tournament selection with
many solutions taking part in the single tournament. This mechanism improves effi-
ciency of the selection. The method has been applied to the multiobjective traveling
salesperson problem (TSP) [419], multiobjective knapsack problem [420], and mul-
tiobjective set covering problem [421]. In [423] it has been combined with a very
efficient Lin-Kernighan local search for single objective TSP. Since a weighted lin-
ear aggregation function was used in this case, it was possible to directly apply the
Lin-Kernighan method for the standard single objective TSP.

13.4.5 RM-MEDA

RM-MEDA (Regularity Model-Based Multiobjective Estimation of Distribution Al-
gorithm) [957] for continuous MOPs is a an example of utilizing problem-specific
knowledge in designing multiobjective heuristics. Under certain smoothness as-
sumptions, the PS of a continuous MOP defines a piecewise continuous (m− 1)-
dimensional manifold in the decision space. where m is the number of the objectives.
Therefore, the PS of a continuous bi-objective optimization problem is a piecewise
continuous curve in Rn while the PS of a continuous MOP with three objectives is
a piecewise continuous surface. The idea behind RM-MEDA is to force its popula-
tion to converge to a (m− 1) piecewise continuous (m− 1)-dimensional manifold.
At each generation, RM-MEDA firstly extracts statistical information from some se-
lected good solutions and then estimates the distribution of Pareto optimal points by
using a probability model whose centroid is a (m− 1)-dimensional manifold. New
solutions are generated by sampling from the model thus built. The major compu-
tational overhead in RM-MEDA lies in model building. It is very costly to build a
very accurate model. The local principal component analysis, a low-cost statistical
algorithm, has been used for modeling. The experimental results have demonstrated
that RM-MEDA works well, particularly when the PS is not a linear manifold. Re-
cently, RM-MEDA has been generalized to the case when the dimensionality of the
PS is unknown [961].
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13.4.6 MOEA/D

MOEA/D (multiobjective evolutionary algorithm based on decomposition) [955] is
a simple and generic multiobjective metaheuristic. It uses a aggregation method to
decompose the MOP into N single objective optimization subproblems and solves
these subproblems simultaneously (where N is a control parameter set by users).
In MOEA/D, N procedures are employed and different procedures are for solv-
ing different subproblems. A neighborhood relationship among all the subproblems
(procedures) is defined based on the distances of their weight vectors. Neighboring
subproblems should have similar fitness landscapes and optimal solutions. There-
fore, neighboring procedures can speed up their searches by exchanging informa-
tion. In a simple version of MOEA/D [955] , each individual procedure keeps one
solution in its memory, which could be the best solution found so far for its subprob-
lems; it generates a new solution by performing genetic operators on several solu-
tions from its neighboring procedures, and updates its memory if the new solution
is better than old one for its subproblem. A procedure also passes its new generated
solution on to some (or all) of its neighboring procedures, who will update their
current solutions if the received solution is better. A major advantage of MOEA/D
is that single objective local search can be used in each procedure in a natural way
since its task is for optimizing a single objective subproblem. Several improvements
on MOEA/D have been made recently. Li and Zhang suggested using two different
neighborhood structures for balancing exploitation and exploration [516]. Zhang
et al [961] proposed a scheme for dynamically allocating computational effort to
different procedures in MOEA/D in order to reduce the overall cost and improve
the algorithm performance, this implementation of MOEA/D is efficient and effec-
tive and has won the CEC’09 MOEA competition. Nebro and Durillo developed a
thread-based parallel version of MOEA/D [652], which can be executed on multi-
core computers. Palmers et al. proposed an implementation of MOEA/D in which
each procedure recorded more than one solutions [699]. Ishibuchi et al. proposed
using different aggregation functions at different search stages [413].

13.4.7 MGK Population Heuristic

Gandibleux at al. [301] proposed a hybrid population heuristic for combinatorial
problems. They used a Pareto ranking-based evolutionary algorithm as the popula-
tion heuristic. The algorithm starts by seeding the initial population with some very
good solutions. The solutions may be supported by Pareto-optimal solutions found
by either an exact or approximate method. Furthermore, local search is applied dur-
ing the run of the method. The method has been applied to a permutation scheduling
problem and to the knapsack problem.
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13.4.8 Memetic Approach by Chen and Chen

Chen and Chen [124] combine a dominance-based local search with a Pareto
ranking-based multiobjective evolutionary algorithm. They use a special kind of
local search with several species exploiting different regions in the objective space.
The method has been applied to the problem of flexible process sequencing.

13.4.9 SPEA2 with LS

Schuetze et al. [797] combined SPEA2 [968] algorithm with local search for con-
tinuous multiobjective problems. They developed Hill-Climber with Sidestep pro-
cedure based on the dominance relation than can move either towards or along the
Pareto front. They reported significant improvements of the performance in com-
parison to the standard SPEA2 algorithm.

SPEA2 was also hybridized with a gradient-based local search for continuous
problems by Harada eta al. [365]. They compared two approaches, GA with local
search and GA then local search. They reported better performance of the latter for
continuous problems.

13.4.10 Interactive Memetic Algorithm by Dias et al.

Dias et al. [212] proposed an interactive multiobjective memetic algorithm. The al-
gorithm optimizes an aggregation function based on the preferences of the decision
maker. The algorithm works like a standard single objective memetic algorithm,
however, the whole set of potentially Pareto-optimal solutions may be presented
to the decision maker. The algorithm uses hot start technique. When the decision
maker changes his/her preferences the current population is optimized further with
a new aggregation function. The algorithm has been applied to the dynamic location
problem.

13.4.11 SMS-EMOA with Local Search

Koch et al. [475] hybridized SMS-EMOA [64] with a gradient-based local search
for continuous problems. SMS-EMOA in an indicator-based evolutionary algorithm
that optimizes the hypervolume of the dominated space. The authors used a multi-
objective Newton method.

13.5 Implementation of Multiobjective Memetic Algorithms

When we implement a multiobjective memetic algorithm for a particular MOO
problem, we have a large number of options in its design. This means that we have a
number of implementation issues to be taken into account. Typical issues are as fol-
lows: choice of a population-based multiobjective global search algorithm, choice
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of a local search algorithm, timing of local search, selection of starting points for
local search, and allocation of the available computation time to global search and
local search. Each of these issues is briefly explained in the following:

1. The choice of a population-based multiobjective global search algorithm: This
choice includes the related settings in the chosen global search algorithm (e.g., cod-
ing of solutions, genetic operators, parameter specifications, etc.). In early proposals
of multiobjective memetic algorithms, evolutionary algorithms were mainly used
for global search. This is because other population-based multiobjective algorithms
were not popular in 1990s. Recently various multiobjective algorithms have been
proposed based on different population-based global search mechanisms such as
particle swarm optimization [134], ant colony optimization [214], and differential
evolution [30, 769]. New types of multiobjective evolutionary algorithms have been
also proposed based on estimation of distribution algorithms [957], indicator-based
algorithms [64, 244, 967], and multiple aggregation functions [967]. As a result, we
have a wide variety of options with respect to the global search part of multiobjective
memetic algorithms.

2. The choice of a local search algorithm such as hill-climbing, simulated an-
nealing and tabu search: This choice includes the related settings in the chosen local
search algorithm (e.g., a generation mechanism of a neighboring solution, an ac-
ceptance criterion of neighbors, a termination condition of local search, etc.). The
specification of an acceptance criterion is usually the same as the choice of a lo-
cal search guiding mechanism. Problem-specific heuristics can be incorporated into
local search, which usually improves the search ability of multiobjective memetic
algorithms [413]. In the case of combinatorial optimization, generation mechanisms
of neighbouring solutions in local search are usually similar to mutation operators
in evolutionary algorithms. That is, new solutions are generated in a similar man-
ner in local search and mutation whereas they have different acceptance criteria. On
the other hand, different mechanisms are often used to generate new solutions in
local search and mutation when multiobjective memetic algorithms are designed for
continuous optimization. This is because the gradient information of objective func-
tions is often used in local search to find better solutions whereas mutation usually
modifies a part of the current solution randomly.

3. Timing of local search: Local search can be combined with a population-based
multiobjective global search algorithm in various manners with respect to the timing
of local search. Usually local search is invoked at every generation of a population-
based multiobjective global search algorithm. In this case, local search starts from
an offspring in global search. That is, global search can be viewed as providing local
search with good starting points. Then the improved solutions by local search are
used as parents in global search. That is, local search can be viewed as providing
global search with good parents. In this manner, a population of solutions is improved
by alternately using global search and local search. Local search is not necessarily
to be used at every generation. For example, it can be used at every 10 generations
or every 100 generations. One extreme case is the use of local search only before
global search. In this case, local search can be viewed as generating a good initial
population for global search. The basic idea behind this implementation is ”better
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solutions may be obtained by recombining good locally-optimal solutions”. Another
extreme case is the use of local search only after global search. In this case, global
search can be viewed as generating good starting points for local search. In other
words, local search can be viewed as being used for the final improvement of global
search results. The basic idea behind this implementation is ”the local search ability
of population-based algorithms is not high” and ”better solutions may exist in the
vicinity of good solutions”.

4. Choice of staring points for local search: When local search is applied, start-
ing points should be chosen from the current (or offspring) population. One naive
implementation is to apply local search to all solutions in the current population.
Another implementation is to apply local search to each solution probabilistically.
Of course, other mechanisms can be implemented to choose starting points for local
search such as the choice of only a small number of very good solutions with respect
to some local search guiding mechanisms and the application of local search only
to non-dominated solutions.

5. Allocation of available computation time to global search and local search: In
single-objective memetic algorithms, many more solutions are usually examined by
local search than population-based global search. This is not a bad strategy because
the goal of single-objective optimization is usually to find a single optimal solution.
In the case of multiobjective optimization, however, it is not a good strategy to spend
too much computation time on local search for a specific direction even if some
Pareto optimal solutions can be found by local search. This is because the goal
of multiobjective optimization is not to find some Pareto optimal solutions but to
approximate the entire Pareto front. We need to search for Pareto optimal solutions
in various directions. Thus we should not spend too much computation time on
local search for a specific direction. As a result, it is very important to allocate
available computation time to global search and local search [411]. Moreover the
computation time for local search should be appropriately reallocated to various
local search directions.

As we have already explained in a previous subsection, landscape analysis is very
useful in the design of efficient multiobjective memetic algorithms. For example, if
a multiobjective problem has many local optima where local search is trapped, it
may be a better idea to shallowly examine only a few neighbors of many start-
ing points rather than to deeply examine many neighbors of a few starting points.
However, the landscape of real-world multiobjective problems is often unknown. In
that case, it is important to understand characteristics of each component of mul-
tiobjective memetic algorithms. For example, if a local search algorithm with high
search ability towards the Pareto front is available, it may be a good idea to use a
population-based global search algorithm with high diversity maintenance ability.
On the other hand, if we use a population-based global search algorithm with high
convergence property towards a part of the Pareto front, the diversity improvement
by local search is important. The point is to fully utilize the synergy effect of using
both global search and local search.
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13.6 Conclusions

Multiobjective memetic algorithms constitute a very promising class of multiob-
jective metaheuristics. In many experiments they proved their efficiency for both
combinatorial and continuous MOO problems.

Despite the need for new efficient memetic methods and the need for further
applications, a number of other important directions for further research could
suggested:

• The use of landscapes analysis in the design of recombination operators or the
whole methods. Despite of some promising preliminary results discussed above,
we are far from full understanding of the influence of landscapes of MOO prob-
lems on the performance of multiobjective memetic algorithms.
• The use of Pareto local search in multiobjective memetic algorithms. PLS has

recently proved [542] to be a powerful technique for some multiobjective com-
binatorial optimization problems, being able to compete with memetic algo-
rithms based on standard local search. PLS, however, becomes prohibitively
inefficient with increasing number of objectives. Thus, hybridization with some
global search techniques seems to be a promising approach.
• The use of advanced local search techniques, e.g. candidate moves, in MOO.

Such techniques may have crucial influence on the performance of the local
search component, and thus on the performance of the whole multiobjective
memetic algorithm.
• Hybridization of other population-based algorithms, e.g. ant colony optimiza-

tion, particle swarm optimization, differential evolution, with local search in
MOO. Such algorithms may provide alternative global search components of-
ten competitive to evolutionary algorithms.
• Handling of many objectives in multiobjective memetic algorithms. Since, in

general, the size of the Pareto front and the time needed to approximate it grows
fast with the increasing number of objectives, interactive approaches seem to be
a promising direction. In this case, some partial preference information may be
used to focus the search on the desired regions of the Pareto front.


	Multiobjective Memetic Algorithms
	Introduction
	Basic Definition and Concepts
	Basic Concepts
	Aggregation Functions
	Weighted Sum Approach
	Tchebycheff Approach

	Adaptation of Memetic Algorithms for Multiobjective Optimization – Basic Concepts
	Dominance-Based Evaluation Mechanisms
	Aggregation Function-Based Evaluation Mechanisms
	Problem Landscapes in Multiobjective Optimization
	Archive of Potentially Pareto-optimal Solutions
	Evaluation of Multiobjective Memetic Algorithms

	Examples of Multiobjective Memetic Algorithms
	MOGLS of Ishibuchi and Murata 
	M-PAES
	NSGA-II with LS 
	MOGLS of Jaszkiewicz 
	RM-MEDA
	MOEA/D
	MGK Population Heuristic
	Memetic Approach by Chen and Chen
	SPEA2 with LS 
	Interactive Memetic Algorithm by Dias et al.
	SMS-EMOA with Local Search

	Implementation of Multiobjective Memetic Algorithms 
	Conclusions




