
Chapter 11
Self-adaptative and Coevolving Memetic
Algorithms

James E. Smith

11.1 Introduction

Results from applications of meta-heuristics, and Evolutionary Computation in par-
ticular, have led to the widespread acknowledgement of two facts. The first is that
evolutionary optimisation can be improved by the use of local search methods, cre-
ating so-called Memetic Algorithms. The second is that there is no single ”best”
choice of memetic operators and parameters- rather the situation changes according
to both the problem and the particular stage of search. This has created a grow-
ing interest in ”Adaptive” Memetic Algorithms which combine a portfolio of local
search operators with some method to choose between them. Here we describe tech-
niques which extend these ideas to allow the behaviours of the local search opera-
tors to adapt during the search process. In the first case these maybe thought of as
Self-Adaptive, so that each member of the evolving population encodes for both an
initial solution to a problem, and a learning mechanism which acts on that solution
to improve it. More generally, we show that these can be treated as separate co-
evolving populations of ”genes” and ”memes” . Following a review of related work,
we next describe a framework for meme-gene self-adaptation and co-evolution. This
is followed by a summary of the ”proof-of-concept” and of findings concerning rep-
resentation and scalability with self-adaptive memes. Next the paper considers in
more depth issues relevant to co-evolution such as credit assignment, and the ratio
of population sizes - which can be thought of as the memetic ”load” that an evolving
population can support.

James E. Smith
Department of Computer Science, University of the West of England,
Bristol, BS16 1QY, UK Name
e-mail: james.smith@uwe.ac.uk

F. Neri et al. (Eds.): Handbook of Memetic Algorithms, SCI 379, pp. 167–188.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

james.smith@uwe.ac.uk

168 J.E. Smith

11.2 Background

The performance benefits which can be achieved by hybridising Evolutionary Al-
gorithms (EAs) with Local Search (LS) operators, so-called Memetic Algorithms
(MAs), have now been well documented across a wide range of problem domains
such as optimisation of combinatorial, non-stationary and multi-objective problems
(see [493] for a review, and [376] for a collection of recent algorithmic and theo-
retical work). Typically in these algorithms, a LS improvement step is performed
on each of the products of the generating (recombination and mutation) operators,
prior to selection for the next population. There are of course many variants on this
theme, but these can easily be fitted within a general syntactic framework [493].

In recent years it has been increasingly recognised that the choice of LS operator
will have a major impact on the efficacy of the hybridisation. Of particular impor-
tance is the choice of move operator, which defines the neighbourhood function, and
so governs the way in which new solutions are generated and tested. For example
Krasnogor and Smith used Polynomial Local search (PLS) theory to show that the
worst-case runtime of an MA is not improved over the underlying EA if the LS
neighbourhood function does not differ from those of the EAs variation operators
[494]. However, points which are locally optimal with respect to one neighbourhood
structure will not in general be so with respect to another, unless of course they are
globally optimal. It therefore follows that even if a population only contains local
optima, then changing the LS move operator (neighbourhood) may provide a means
of progression in addition to recombination and mutation. This observation has led
a number of authors to investigate mechanisms for choosing between a set of pre-
defined LS operators which may be used during a particular run of a meta-heuristic
such as an EA.

11.2.1 MAs with Multiple LS Operators

There are several recent examples of the use of multiple LS operators within evolu-
tionary systems. Ong et al. [683] present an excellent recent review of work in the
field of what they term “Adaptive Memetic Algorithms”. This encompasses Krasno-
gor’s “Multi-Memetic Algorithms” [486, 487, 491, 492, 496], Smith’s COMA
framework [821, 824, 825, 830], Ong and Keane’s “Meta-Lamarkian MAs [680],
and Hyper-Heuristics [96, 97, 169, 456]. In another interesting related algorithm,
Krasnogor and Gustafson’s “Self-Generating MAs” use a grammar to specify for in-
stance when local search takes place [488, 490]. Essentially all of these approaches
maintain a pool of LS operators available to be used by the algorithm, and at each
decision point make a choice of which to apply. There is a clear analogy between
these algorithms and Variable Neighbourhood Search [363], which uses a heuristic
to control the order of application of a set of predefined LS operators to a single
improving solution. The difference here lies in the population based nature of MAs,
so that not only do we have multiple LS operators but also multiple candidate so-
lutions, which makes the task of deciding which LS operator to apply to any given
one more complex.

11 Self-adaptative and Coevolving Memetic Algorithms 169

Ong’s classification uses terminology developed elsewhere to describe adaptation
of operators and parameters in Evolutionary Algorithms [237, 238, 386, 829]. This
categorises algorithms according to the way that these decisions are made. One way
(termed ”static”) is to use a fixed strategy . Another is to use feedback of which
operators have provided the best improvement recently. This is termed “Adaptive”,
and is further subdivided into “external”, “local” (to a deme or region of search
space), and “global” (to the population) according to the nature of the knowledge
considered. Finally they note that LS operators may be linked to candidate solutions
(Self-Adaptive). We will adopt this terminology, and also make use of the general
term “meme” to denote an object specifying a particular local search strategy.

11.2.2 Self-adaptation in EAs

We are concerned with meta-heuristics which maintain two sets of objects - one of
genes and one of memes. If these sets are adaptive, and use evolutionary processes to
manage what may now be termed populations, then we can draw some immediate
parallels to other work. If the populations are of the same size and selection of
the two is tightly coupled (to use the notation of [22]) then this can be considered
as a form of Self Adaptation. The use of the intrinsic evolutionary processes to
adapt mutation step sizes has long been used in Evolution Strategies [799], and
Evolutionary Programming [268]. Similar approaches have been used to self-adapt
mutation probabilities [31, 828] and recombination operators[793, 827] in genetic
algorithms (GAs) as well as more complex generating operators combining both
mutation and recombination [826]. More recently Smith and Serpell have showed
that self-adaptation can very effectively govern both the choice and parameterisation
of different mutation operators for GAs with permutation representations [807].

11.2.3 Co-evolutionary Systems

If selection is performed separately for the two populations, with memes’ fitness
assigned as some function of the relative improvement they cause in the “solu-
tion” population, then we have a co-operative co-evolutionary system. Following
initial work by Husbands and Mill [399] this metaphor has gained increasing in-
terest. Paredis has examined the co-evolution of solutions and their representations
[709]. Potter and DeJong have also used co-operative co-evolution of partial solu-
tions in situations where an obvious problem decomposition was available [727].
Both reported good results. Bull [90] conducted a series of more general studies on
co-operative co-evolution using Kauffman’s static NKC model. In [92] he examined
the evolution of linkage flags in co-evolving “symbiotic” systems and showed that
the strategies which emerge depend heavily on the extent to which the two popula-
tions affect each others fitness landscape. In highly interdependent situations linkage
of the two species’ chromosomes was preferred –which in our context is equiva-
lent to memes self-adapting as part of the solutions’ genotypes. Bull also exam-
ined the effect of various strategies for pairing members of different populations for

170 J.E. Smith

evaluation [91]. This showed mixed results, although the NKC systems he inves-
tigated used fixed interaction patterns. This work has recently been revisited and
extended by Wiegand et al. with very similar findings [933]. Wiegand’s work also
focused attention on the number of partners with which a member of either popula-
tion should be evaluated, which draws attention to the trade-off between accurately
estimating the value of an object (solution or meme), and using up evaluations
doing so. Parker and Blumenthal’s “Punctuated Anytime Learning with samples”
[714] is another recent approach to the pairing problem by using periodic sampling
to estimate fitness, but this is more suited to approaches where the two popula-
tions evolve at different rates. Closely related to this, Bull, Holland and Blackmore
have examined the effect of changing the relative speed of evolution of popula-
tions which they termed ”genes” and ”memes” [93]. Their results showed that as
the relative speed of meme evolution increased a point was reached beyond which
gene evolution effectively ceases. However, the NKC systems they use severely limit
the types of interaction permitted to an abstraction rather different from most MA
applications.

There has also been a large body of research into competitive co-evolution (see
[710] for an overview). Here the fitnesses assigned to the two populations are di-
rectly related to how well individuals perform against the other population - what
has been termed “predator-prey” interactions. Luke and Spector [541] have pro-
posed a general framework within which populations can be co-evolved under dif-
ferent pressures of competition and co-operation. This uses speciation both to aid
the preservation of diversity and as a way of tackling the credit assignment problem.

In all the co-evolutionary work cited above, the different populations only affect
each other’s perceived fitness, unlike the COMA framework where the meme pop-
ulation can directly affect the genotypes within the solution population. This raises
the question of whether the modifications arising from Local Search should be writ-
ten back into the genotype (Lamarckian Learning) or not (Baldwinian Learning).
Although the pseudo-code and the discussion below, assumes Lamarckian learning,
this is not a prerequisite of the COMA framework. However, even if a Baldwinian
approach was used, COMA differs from the co-evolutionary systems above because
there is a selection phase within the local search, so that if all of the neighbours of a
point defined by the meme’s rule are of inferior fitness, then the point is retained un-
changed within the population. If one was to discard this criterion and simply apply
the rule (possibly iteratively), the system could be viewed as a type of “developmen-
tal learning” akin to the studies in Genetic Code e.g. [443] and the “Developmental
Genetic Programming” of Keller and Banzhaf [453, 454].

11.3 A Framework for Self-adaption and Co-evolution of
Memes and Genes

In this section we describe a conceptual framework designed to support a wide range
of algorithms for meme adaptation.

11 Self-adaptative and Coevolving Memetic Algorithms 171

11.3.1 Specifying Local Search

The primary factor that affects the behaviour of the LS is the choice of neighbour-
hood generating function. This can be thought of as defining a set of points n(i)
that can be reached by the application of some move operator to the point i. One
representation is as a graph G = (v,e) where the set of vertices v are the points
in the search space, and the edges relate to applications of the move operator i.e
ei j ∈ G ⇐⇒ j ∈ n(i). The provision of a scalar fitness value, f , defined over the
search space means that we can consider the graphs defined by different move op-
erators as “fitness landscapes” [433]. Merz and Freisleben [585] present a number
of statistical measures which can be used to characterise fitness landscapes, and
have been proposed as potential measures of problem difficulty. They show that the
choice of move operator can have a dramatic effect on the efficiency and effective-
ness of the Local Search, and hence of the resultant MA.

The second component of Local Search is the choice of pivot rule, which can be
Steepest Ascent or Greedy Ascent. In the former the “termination condition” is that
the entire neighbourhood n(i) has been searched, whereas the latter stops as soon as
an improvement is found. Note that one can consider only a randomly drawn sample
of size N <<| n(i) | if the neighbourhood is too large to search.

The final component is the “depth” of the Local Search. This lies in the con-
tinuum between only one improving step being applied to the search continuing to
local optimality. Studies with MAs e.g. [366] have shown it affects the performance
both in terms of time taken and of quality of solution found.

11.3.2 Adapting the Specification of Local Search

The aim of this work is to provide a means whereby the definition of the LS operator
used within a MA can be varied over time, and then to examine whether evolution-
ary processes can control that variation so that beneficial adaptation takes place.
Accomplishing this aim requires the provision of four major components, namely:

• A means of representing a LS operator in an evolvable form i.e. as a meme.
• A means of assigning fitness to memes.
• A choice of population structures and sizes, selection and replacement methods

for managing the meme population.
• A set of experiments to permit evaluation and analysis of the system.

The pseudo-code in Algorithm 21 illustrates the algorithmic framework of a CO-
evolutionary Memetic Algorithm (COMA) developed to support this research. Note
that although this pseudo-code assumes synchronous evolution, this need not in
general be the case. The representation of the memes is a tuple <Pivot, Depth,
Pairing,Move>, which can readily encompass all of the other requirements identi-
fied above. The representation of the tuple elements leads naturally to the choice
of evolutionary variation operators. The Pivot,Depth and Pairing elements can be
easily mapped onto integer or cardinal representations. The latter element, is one

172 J.E. Smith

Algorithm 21. Pseudo-Code Definition of COMA algorithm
// Given populations P of μs solutions and M of μm memes
initialise P and M randomly ;1
set generations← 0;2
set evaluations← 0;3
while run termination condition is satisfied do4

// Create μs solution offspring and store parent ids
for i← 1toμs do5

set FirstParent[i]← Select One Parent(P);6
set SecondParent[i]← Select One Parent(P);7
set Offspring[i]← Recombine(FirstParent[i],SecondParent[i]);8
Mutate(Offspring[i]);9
set i← i +1;10

endfor11
// Create mum meme offspring according to pairing
for i← 1toμm do12

set Pairing← Get Pairing(M,i);13
if Pairing = SelfAdaptive then14

set MemeParent1[i]← FirstParent[i];15
set MemeParent2[i]← SecondParent[i];16
// note this requires μm = μs.

endif17
else if Pairing = Fitness Based then18

set MemeParent1[i]← Select One Parent(M);19
set MemeParent2[i]← Select One Parent(M);20

endif21
else22

set MemeParent1[i]← RandInt(1,μm);23
set MemeParent2[i]← RandInt(1,μm);24

endif25
set NewMemes[i]← Recombine(MemeParent1[i],MemeParent2[i]);26
Mutate(NewMemes[i]);27
set i← i+1;28

endfor29
// Apply local search to Offspring Using Memes
for i← 1toμs do30

set original fitness← Get Fitness(Offspring[i]);31
if Pairing = SelfAdaptive then32

set meme← i;33
endif34
else35

set meme← Select Random(NewMemes);36
endif37
set Neighbours← Apply Rule To Offspring(Offspring[i],NewMemes[meme]);38
Evaluate Fitness(Neighbours);39
set Offspring[i]← Apply Pivot Rule(Neighbours);40
set Δfitness← Get Fitness(Offspring[i]) - original fitness;41
Update Meme Fitness(NewMemes[meme], Δfitness);42
set evaluations← evaluations +1 + |Neighbours|;43
set i← i +1;44

endfor45
set P← Offspring;46
set M ← NewMemes;47

endw48

11 Self-adaptative and Coevolving Memetic Algorithms 173

of {Self-Adaptive, Random, Fitness Based} and determines how memes are created
and applied to solutions. As is illustrated in the If..Else section of the pseudo-code,
a range of behaviours from self-adaptive, through collaborative co-evolution to ran-
dom meme drift can be obtained.

This framework is designed it be generic in the way that move operators are de-
scribed - for example they could be GP-like expressions as per [288]. However while
such richness tends to lead to complexity of expression suitable for practical applica-
tions, it can make analysis of evolved behaviour more difficult. Therefore for the ini-
tial development work a simpler format was used together with well-understood test
problems. In what follows, move operators are encoded as condition:action pairs,
which specify one pattern to be looked for in the problem representation, and an-
other to replace it. The neighbourhood of a point i then consists of i itself, plus all
those points where the substring denoted by condition appears in the representation
of i and is replaced by the action. To give an example, a rule 1#0→ 111 matches the
binary string 1100111000 in the first, second, sixth and seventh positions, and the
neighbourhood is the set {1100111000, 1110111000, 11111111000, 1100111100,
1100111110}.

Note that the string is not treated as toroidal, and the neighbours are evaluated
in a random order so as not to introduce positional bias into the local search when
greedy ascent is used. Although this representation at first appears very simple, it
has the potential to represent highly complex moves via the use of symbols to denote
not only single/multiple wild-card characters (in a manner similar to that used for
regular expressions in Unix) but also the specifications of repetitions and iterations.
Further, permitting the use of different length patterns in the condition and action
parts of the rule gives scope for cut and splice operators working on variable length
solutions.

11.4 Test Suit and Methodology

A range of well understood test problems were used to examine the performance of
various self-adaptive and coevolutionary MAs. Some of these are ”standard” testbed
functions for EAs, others were specifically designed to probe and evaluate certain
behaviours. The initial systems only used rules where the condition and action pat-
terns were of equal length and were composed of values taken from the set of per-
missible allele values of the problem representation, augmented by a “don’t care”
symbol (#) which is allowed to appear in the condition part of the rule and option-
ally in the action where it is treated as invert. In practise, each rule was augmented
by a value rule length specifying the number of positions in the pattern string to
consider. This permitted not only the examination of the effects of different fixed
rule sizes, but also the ability to adapt its value via mutation.

174 J.E. Smith

11.4.1 The Test Suite

The first set of problems used are composed of 16 subproblems of Deb’s 4-bit fully
deceptive function [35]. The fitness of each subproblem i is given by its unitation
u(i), that is the number of bits set to “one”:

f (i) =

{
0.6−0.2 ·u(i) : u(i) < 4

1 : u(i) = 4
(11.1)

In addition to a “concatenated” version (4-Trap), a second “distributed”version
(Dist-Trap) was used in which the subproblems were interleaved i.e. sub-problem
i was composed of the genes i, i+ 16, i+ 32, i+ 48. This separation ensured that in
a single application even the longest rules allowed in these experiments would be
unable to alter more than one element in any of the sub-functions. A third variant
of this problem (Shifted-Trap) was designed to be more “difficult” than the first for
the COMA algorithm, by making patterns which were optimal in one sub-problem,
sub-optimal in all others. Since unitation is simply the Hamming distance from the
all-zeroes string, each sub-problem can be translated by replacing u(i) with the
Hamming distance from an arbitrary 4 bit string. There were 16 sub-problems so
the binary coding of each ones’ index was used as basis for its fitness calculation.

The second test function was Watson’s Hierarchical-if-and-only-if (H-IFF) func-
tion, a highly epistatic problem designed to examine the virtues of recombination.
At the bottom level, fitness is awarded to matching pairs of adjacent bits in a solution
s, i.e.

f1s =
l/2−1

∑
i=0

1−XOR(s2i,s2i+1) (11.2)

and this process is applied recursively, so that a problem of size l = 2k has k levels.
In each ascending level the number of blocks is reduced by a factor of two, and
the fitness awarded for each matching pair is increased by a constant factor, in our
case 2. This problem has a number of Hamming sub-optima, and two global optima
corresponding to the u(i)∈ {0,1}. Problem sizes l ∈ {16, . . . ,512,1024}were used,
corresponding to 3 to 10 levels. Note that for l >16 the length of the blocks to be
identified at the highest levels far exceeded the maximum rule length.

The Maximum satisfiability (Max-SAT) problem is a classical combinatorial op-
timisation problem, consisting of a number of Boolean variables and a set of clauses
built from those variables. A full description and many examples can be found in
[392]. For each length {50,100,250} the first 25 were taken from the sets of uni-
formly randomly created satisfiable instances around the phase transition (in terms
of hardness) where there are approximately 4.3 clauses per variable.

11.4.2 Experimental Set-Up and Terminology

A generational genetic algorithm, with deterministic binary tournament selection
for parents and no elitism was used. Population size μs was 250 unless otherwise

11 Self-adaptative and Coevolving Memetic Algorithms 175

stated. One Point Crossover (with probability 0.7) and bit-flipping mutation (with a
bitwise probability of 0.01) were used on the problem representation. These choices
were taken as “standard”, and no attempt was made to tune them to the particular
problems at hand. Mutation was applied to the rules with a allele-wise probability
of 0.0625 - the inverse of the maximum rule length allowed to the adaptive version.
If the rule length was adaptive, they were randomly initialised in the range [1,16],
and during mutation, a value of +/- 1 is randomly added with probability 0.0625,
subject to staying in range.

For each problem, 20 runs were made, each continuing until the global optimum
was reached, subject to a maximum of 500,000 evaluations. Two performance met-
rics were considered; the Success Rate (SR) which is the number of runs finding
the global optimum, and the Average Evaluations to Success (AES) which is the
mean time taken to locate the global optimum on successful runs. The reason for
the large cut-off value was to try and avoid skewing results as can happen with
an arbitrarily chosen lower cut-off, rather than to be indicative of the amount of
time available for a “real world” problem. Note that since one iteration of a local
search may involve several evaluations, this allows more generations to the GA, i.e.
algorithms are compared strictly on the basis of the number of calls to the evalu-
ation function. Any observed differences in performance were tested for statistical
significance using ANOVA and pairwise post-hoc testing using the Tukey’s Least
Significant Difference (LSD) and Tamhane’s T2 tests at the 95% confidence level.

The variants of self- and co-adaptive algorithms that can be instantiated within
this framework are denoted as CXY where X denotes the pairing and is one of L
(Linked, or self-adaptive), R (Random drift) or T (Tournament - variants of fitness
based coevolution). Y denotes the pivot function and is one of Greedy, Steepest or
Adaptive. Rule lengths are adaptive unless denoted by a numeric prefix. Depth of
search is one unless indicated by a suffix -L (to local optima) or -Adaptive.

11.5 Self-adaptation of Fixed and Varying Sized Rules

11.5.1 Self-adapting the Choice from a Fixed Set of Memes

The first experiments in this line of research explored the ability of evolutionary
mechanisms to correctly select between a number of fixed memes. This can be
achieved trivially within the COMA framework by the use of appropriate initial-
isation for the meme population, setting the meme recombination probabilities to
zero and defining the mutation operator so that it chose between the set of fixed
memes rather than operating ”within” each meme. In [492] experiments were run
on a range of TSP problems using MAs with one of set of ten memes which var-
ied in both their move operators and depth. When the search progress was plotted
together, it could clearly be seen that the optimal choice of meme was dependant
on the state of the search as well as on the individual TSP instance. Next the pop-
ulation members of ”multimeme” algorithm were allowed to self-adapt the choice
of which meme to use. The results showed that the progress tracked that of the

176 J.E. Smith

currently best-performing meme from the ”static” MAs, ultimately outperforming
each of them. The evolved patterns of meme usage closely matched what might have
been ”designed” with hindsight, with periods of one meme dominating alternating
with periods of broader usage as local optima were reached, then escaped from.

The concept of self-adapting the choice from a fixed set of memes was also suc-
cessfully demonstrated by Krasnogor et al. for protein structure alignment [496].

11.5.2 Self-adaptation of Meme Definitions

Initial experiments were restricted to considering a simple system, and examining
first whether the system was able to evolve useful rules for the ”trap” problems -
first when the rule length naturally matched the structure of the problem, and then
whether the system was able to adapt to an appropriate rule length for different prob-
lems. For this reason it was decided to avoid the various issues concerning popula-
tion management, pairing strategies and credit assignment, and instead work with
a single improvement step, a fully linked self-adaptive system and a greedy pivot
rule. These choices were coded into the chromosomes at initialisation, and variation
operators were not used on them. The algorithms used (and the abbreviations which
will be used to refer to them hereafter) are as follows:

• A “vanilla” GA with no Local Search (GA).
• A simple bit-flipping MA (SMA-G).
• COMA using a random rules, i.e. with the learning disabled (CRG).
• COMA with self-adaptive memes, greedy pivot and adaptive rule lengths (CLG).
• COMA using fixed length memes (1-CLG,. . .,10-CLG),

Experiments were run with population sizes (μs,μm) of 100, 250 and 500.

11.5.3 Results on Trap Functions

The results on 4-Trap showed that the GA, SMA, and 1-CLG algorithms frequently
failed to find the optimum but the other COMA variants, always did. On these prob-
lems there was a clear benefit to using adaptive neighbourhood local search, al-
though since the CRG algorithm also found the optimum on every run, it cannot be
concluded from the Success Rates that learning was taking place. Considering the
AES, the GA, SMA and 1-CLG algorithms took significantly longer to locate the
optimum. For a population of 500 2-CLG joined the significantly slower group.

In short, it could be observed that for fixed rule lengths of between 3 and 9,
and for the adaptive version, the COMA system derived performance benefits from
evolving LS rules according to both metrics on this function.

For the Shifted-Trap function, the performances of the GA and SMA were not
significantly different from those on 4-Trap because these algorithms solved the sub-
problems independently and so were “blind” to whether the optimal string for each
was different. The COMA results exhibited the same pattern of behaviour noted

11 Self-adaptative and Coevolving Memetic Algorithms 177

above; fast, reliable problem solving for all but 1-CLG and 2-CLG, and even for
these two the AES results were statistically significantly better than GA or SMA.

On Dist-Trap, GA, SMA and CRG never located the global optimum, regardless
of population size. While the Success Rate for COMA was less than for the other
problems (typically 10-15/20 for μ = 100 and 15-20/20 for μ = 250), the same
pattern was observed of better performance (SR and AES) for the adaptive version
and fixed rule lengths in the range 3-5, tailing off at the extremes of the length range.

11.5.4 Analysis of Results and Evolution of Rule Base

The deceptive functions used were specifically chosen because GA theory suggests
they are best solved by finding and mixing optimal solutions to sub-problems. Thus
the GA failed to solve the function when the crossover operator was not suited to
the representation (Dist-Trap). Considering the action of a single bit-flipping LS
operator on these “trap” subproblems, a search of the Hamming neighbourhood of a
solution will always lead towards the sub-optimal solution when the unitation is 0,1
or 2, regardless of pivot rule. Additionally, the greedy search of the neighbourhood
will lead towards the deceptive optimum 75% of the time when the unitation is 3.
This explains the poor results of the SMA, and 1-CLG algorithms.

The behaviour of the CLG algorithm was examined by plotting the population
mean against time of the rule length, the specificity of the condition (the propor-
tion of values set to #), and the unitation of the action. These results are shown in
Figure 11.1.

For the 4-Trap function, the system rapidly evolved medium length (3−4), gen-
eral (specificity < 50%) rules whose action was to set all the bits to 1 (mean unita-
tion 100%). Closer inspection of the evolving rule-base confirmed that the optimal
subproblem string was being learnt and applied.

0 5 10 15 20
0

20

40

60

80

100
4-Trap

0 25 50
Generations

0

20

40

60

80

100
Shifted Trap

0 25 50
0

20

40

60

80

100

Length (x10)
Specificity (%)
Unitation(%)
Best Fitness

Distributed trap

Fig. 11.1. Analysis of Evolved Rules on three problems with different properties

178 J.E. Smith

For the Shifted-Trap function, where the optimal sub-blocks are all different, the
rule length decreased more slowly from its initial mean value of 8. The specificity
also remained higher, and the mean unitation remained at 50%, indicating that
different rules were being maintained. This was borne out by closer examination of
the evolved rule sets.

The behaviour on Dist-Trap was similar to that on 4Trap, albeit over a longer
time-scale. The algorithm could not possibly be learning specific rules about sub-
problems, since no rule was able to affect more than one locus of any subproblem.
Rather, the system learnt the general rule of setting all bits to 1. The rules were gen-
erally shorter than for 4Trap, which means that the number of potential neighbours
was higher for any given rule. The high incidence of #s meant that the rule length
defined a maximum radius in Hamming space for the neighbourhood, rather than a
fixed distance from the original solution. These two observations, together with the
longer times to solution, suggest that when the system was unable to find a single
rule that matched the problems’ structure, a more diverse search took place using
a more complex neighbourhood which slowly adapted itself to the current solution
population. Full details of these experiments and analysis may be found in [821].

11.5.5 Benchmarking the Self-adaptive Systems

In order to test these hypotheses about how the memes self-adapt in different ways
a further set of experiments was run using a wider range of problems, with 50 runs
per problem-length to tease out statistically significant differences. For the first two
sets of results, both steepest and greedy ascent pivot rules were tried, for the final,
MAX-SAT problem, the pivot rule was also allowed to adapt under mutation.

11.5.5.1 Exploiting Search Space Regularities Gives Scalability

The hypothesis memes adapt to identify and exploit any regularities in the prob-
lem space was tested by varying the lengths of two problems. The first of these
comprised multiple concatenated copies of (11.1) with lengths in the range {40, 60,
80,..., 200}. As expected from above, the results for SMA-G were extremely poor.
The next worse algorithm was CRS. The SR steadily decreased 50 (100%) at length
40 to 5 at length 100 and zero above that. All the other algorithms showed SR of 49
or 50 up to length 160, but only the CLS (39) and CLG (50) solved the 200-bit prob-
lem. This provides evidence that learning is taking place in the meme populations.
The AES results were revealing. The GA was faster than CLG and CLS but the in-
crease in AES with length was worse than linear. The AES results of the successful
COMA variants, and analysis of the evolving rule bases, supported the hypothesis of
discovering and exploiting regularities. In this case it meant identifying a rule giving
the optimal solution to the sub-problems, and then applying it to each sub-problem
in the string in successive generations. as shown in Figure 11.2 CLG was the fastest
algorithm, followed by CLS, and all three were near-linear. For example, a linear
regression of AES to length for CLG fitted the data with a correlation co-efficient of
0.97.

11 Self-adaptative and Coevolving Memetic Algorithms 179

Fig. 11.2. Efficiency of different algorithms on 4 Trap functions with varying length. Anno-
tations beside points show where Success Rates were less than 50/50.

On the H-IFF problems all of the MAs had higher Success Rates than the GA,
and again the CLG and CLS were significantly the best. For example, out of 50 runs
with l = 128 the SR values were 0 (GA, CRG, CRS), 4 (MA), 38 (CLG), 43 (CLS).
Only the CLG (10) variant solved the 256 bit problem. As on other problems: the
greedy ascent versions found the optimum faster (lower AES) than the equivalent
steepest ascent versions but not as reliably (lower SR). ANOVA on the MBF results
confirmed that the performance was statistically significantly different with 95%
confidence. Post-hoc analysis showed that the CLG and CLS variants had a higher
mean best fitness than the others but did not significantly differ.

11.5.5.2 Escaping Local Optima by Changing Neighbourhoods

Shifted-Trap, Dist-Trap and MAX-3SAT were used to examine the behaviour when
there were no regularities that could be exploited. On the Dist-Trap function, only
the CLS and CLG algorithms ever located the global optimum, and both always did,
CLG significantly faster than CLS. On the Shifted-Trap function, the success rates
were 39/50 (CRS) 45/50 (SMA-G) and 50/50 (all others). There was no significant
difference in the mean times to solution.

On MAX-SAT the GA, steepest/greedy simple MAs (SMA-S, SMA-G), and
self-adaptive COMA algorithms with greedy, steepest and adaptive pivot strategies
(CLG, CLS, CLA) were run ten times on each instance. Table 11.1 shows the num-
ber of success from 250 runs. Full experimental details , and some results omitted
here for brevity, may be found in [830].

As can be seen, for the 50 variable instances the simple MAs have the highest
success rates, and the GA the worst. For the longer instances all methods are much
less successful, and many instances are not solved by any algorithms. SMA-G and

180 J.E. Smith

Table 11.1. Success Rates (out of 250) for different length MAX-3SAT problems.

Algorithm Length 50 Length 100

GA 125 21

SMA-S 154 0

SMA-G 153 25

CLS 141 0

CLG 135 25

CLA 144 8

100
50

len

CTACLACTGCTSCLGCLSSMA-GSMA-SGA

Algorithm

600000

400000

200000

0

M
ea

n
Ev

al
ua

tio
ns

 to
 S

uc
ce

ss

600000

400000

200000

0

M
ea

n
Ev

al
ua

tio
ns

 to
 S

uc
ce

ss

Fig. 11.3. Box plots of AES for 100 (top) and 50 (bottom) variable MAX-3SAT instances.

CLG show the same performance For the shorter instances the steepest ascent strat-
egy is on average better, but there are differences between individual instances. For
the longer instances the cost of searching the entire neighbourhood every iteration
becomes prohibitive, so that SMA-S and CLS solve no instances. Analysis shows
that the adaptive variant CLA performs on a par with whichever of the S or G vari-
ants is better for each instance, suggesting successful adaptation.

The AES results show that the GA is the fastest algorithm followed by a close
grouping of SMA-G, CLG then CLA, with the CLS algorithm taking more time
and having a higher variance. The adaptive pivot variants both fall between their
respective greedy and steepest counterparts, both in terms of mean and variance.
GA was significantly faster, and the SMA-S significantly slower than the other al-
gorithms, CLS/CLA/CLG did not significantly differ. Analysis of the mean best
fitness showed that the CLA algorithm came between the two fixed strategies, but
again the ordering of CLG/CLS, and the magnitude of the difference between them,
was instance dependant.

11 Self-adaptative and Coevolving Memetic Algorithms 181

11.5.6 Summary of Self-adaptive Results

The results above highlight the problem of choosing the appropriate local search op-
erator which provided the original rationale for the development of COMA. For ex-
ample, although the Memetic Algorithm with a simple bit-flipping hill climber had
the highest Success Rates and Mean Best Fitness on the Max-3SAT problems, it’s
performance on the other problems was derisory, and frequently worse than the sim-
ple GA. In contrast the self-adaptive MAs exhibited better performance than the GA
or SMA over a wide range of problems, according to different metrics. Fuller details
of the experiments with binary-coded problems may be found in [821, 822, 830],
and details of successful application to a protein structure prediction problem may
be found in [822, 825]. Overall adapting the pivot rule (CLA) is outperformed by
whichever is better of steepest or greedy ascent, but the difference is often marginal,
and more importantly the choice (CLS or CLG) is problem dependant.

11.6 Extension to True Co-evolution: the Credit Assignment
Problem

Having established the basic principle of evolving memes which coded for LS rules
as a means of enhancing optimisation performance in MAs, the next series of exper-
iments used a full co-evolutionary model. Experiments reported in [824, 825, 830]
showed that a major factor determining successful adaption was the credit assign-
ment mechanism used to award fitness to a solution. The results also showed that
with meme fitness dependant simply on the improvement caused, the choice of pivot
and pairing strategies are intertwined.

Unsurprisingly, the greedy variants almost always used less evaluations than the
steepest ascent equivalents on successful runs. However, for some problems (but not
all) the extra noise introduced by using a greedy ascent was sufficient to “fool” the
simple credit assignment mechanism. Thus a good rule will only get a low fitness
if the first match only leads to a small improvement, whereas larger improvement
(and hence fitness) might be seen if it was applied elsewhere in the solution. Another
related source of noise is the choice of partner.

In [831] a number of methods were examined to try and overcome the difficul-
ties of the greedy strategy by reducing the amount of noise present. Meme parent
selection used binary tournaments based on fitness defined in the following ways.

• Simple “global-adaptive” scheme where the fitness of a meme was the improve-
ment it caused when applied to a solution (CT). Note that even if a meme per-
fectly encapsulates the problem structure it can achieve zero fitness if it happens
not to match or change the solution it is paired with.
• COMA with a “memory” (CTD). Inspired by Paredis’ “Life Time Fitness Eval-

uation” (LTFE) [710] this uses a time-decaying fitness function of the form:

meme f itness′ = meme f itness ·α+ improvement caused (11.3)

182 J.E. Smith

A newly created meme takes the average of its parent’s fitnesses. After initial
experiments a decay factor of α = 0.5 was used.
• A modification to the COMA algorithm so that two solution parents con-

tribute to create two offspring solutions via recombination, and similarly for the
memes. Each meme is then tested against both of the solutions and the fitness
assigned is either the mean (CT2M) or better (CT2B) of the two improvements
noted. In Wiegand’s terminology this is a collaboration poolsize of two. Each
solution takes the better of the two neighbours found for it.

11.6.1 Results: Reliability

Table 11.2 shows the Success Rates achieved with the different algorithms on each
function and problem length. The results not just for the 3 Trap variants but also
the H-IFF show the clear advantage of Adaptive Memetic Algorithms over both
the static counterpart (SMA-G) and a simple Genetic Algorithm (GA). The global-
random scheme (CRG) shows lower Success Rates than the other COMA algo-
rithms on most problems. The self-adaptive scheme (CLG) also has lower success
rates on the longer H-IFF problems and the SAT problems that the co-evolutionary

Table 11.2. Success Rates of Algorithms on Different Functions

Function Len CRG CLG CT2BG CT2MG CTDG CTG GA SMAG

4Trap 20 10 10 10 10 10 10 10 10

40 10 10 10 10 10 10 10 6

60 10 10 10 10 10 10 10 3

80 10 10 10 10 10 10 10 0

100 10 10 10 10 10 10 10 0

120 10 10 10 10 10 10 8 0

140 9 10 10 10 10 10 3 0

160 10 10 10 10 10 10 1 0

180 2 10 7 9 10 10 0 0

200 0 10 2 4 10 10 0 0

Shifted Trap 64 10 10 10 10 10 10 10 3

Dist-Trap 64 0 10 10 10 10 9 0 0

H-IFF 16 10 10 10 10 10 10 10 10

32 10 10 10 10 10 10 5 10

64 2 9 9 10 10 8 4 8

128 0 3 5 8 6 7 0 0

256 0 0 6 4 4 3 0 0

SAT 50 131 134 146 152 136 145 114 153

100 28 21 24 26 16 25 38 27

Total 272 307 319 333 312 327 243 230

11 Self-adaptative and Coevolving Memetic Algorithms 183

200.0180.0160.0140.0120.0100.080.060.040.020.0

len

500000

400000

300000

200000

100000

0

A
ve

ra
ge

 E
va

lu
at

io
ns

 to
 S

uc
ce

ss

CT2B

CT2M

CS

CTD

CT

256.0128.064.0

len

400

300

200

100

0

A
ve

ra
ge

 E
va

lu
at

io
ns

 to
 S

uc
ce

ss
 (1

00
0s

)

CTD

CS

CT
CT2M

CT2B

Fig. 11.4. Average Evaluations to Success on Trap (top) and H-IFF (bottom) functions.

variants. Comparing the four different fitness schemes for coevolution, no clear pat-
tern emerges:

• On the 4-trap functions, the meme evolution task is to identify rules of the form
####→ 1111, and then maintain and exploit them through repeated application.
Here the simpler schemes based on a single pairing (CTG, CTDG) find the
optimum slightly more often for the longer instances in the time allowed.

184 J.E. Smith

SMA-GGACTGCTDGCT2MGCT2BGCSGCRG

name

500

400

300

200

100

0

Ev
al

ua
tio

ns
 to

 S
uc

es
s (

10
00

s)

Fig. 11.5. Box-plots of Evaluations to Success on SAT functions. Lighter boxes are for 50-
variable instances, darker ones for 100 variables.

• On the Shifted-Trap and Dist-Trap functions, where it is necessary to maintain
a diverse rule-set in the meme population, algorithms perform the same (100%
Success), except the simple CTG (9/10 on Dist-Trap).
• On the H-IFF and SAT problems the fitness schemes based on a collaboration

poolsize of 2 are more successful, the averaging version (CT2MG) especially
so. Notably the CTDG scheme with memory and a collaboration poolsize of 1
is markedly less successful than the others on the SAT functions.
• Overall the CT2MG algorithm has the highest success rate.

11.6.2 Results: Efficiency

Figures 11.4 and 11.5 illustrate the change in the mean time to locate the optimum
for the Trap, H-IFF and SAT functions used with different length instances. The
results for the GA, SMAG and CRG are omitted from the first two for the sake of
clarity as they are so poor. On the Trap functions the results with collaboration pool-
size 1 (CTG, CTDG, CLG) are obtained faster than with the poolsize of 2 (CT2MG,
CT2BG), the difference being increasingly statistically significant for the longer in-
stances. This is a natural result of the overhead of testing each meme against two
solutions - since the solution just takes the better of the two improvements to be the
result of its Lamarkian learning, the other evaluations are “wasted” from that point
of view. This explains the lower SR for CT2MG/CT2BG on longer 4-Trap problems.
However on the H-IFF function the CTG approach is not only less successful than

11 Self-adaptative and Coevolving Memetic Algorithms 185

the CTDG approach, but takes more evaluations when it does find the optimum. This
can be explained by the fact that the algorithm needs to make a decision between the
all ’1’s solution and the all ’0’s solution, and the use of a memory helps make this
decision consistent between generations. On the SAT problems, where there is no
regular problem structure to be learnt and exploited, the CT2M/B G schemes again
significantly take longer.

11.7 Varying the Population Sizes

The results in the previous section clearly demonstrate the advantages of a credit
assignment mechanism that does not rely solely on the improvement caused when
a meme is applied to a single solution. In general those schemes that make use of
multiple collaborations (to use Wiegend’s terminology) - either explicitly within the
same generation, or via a memory - have higher success rates, but this is sometimes
at the expense of significantly increased run-times. The memory-based approach
(CTDG) is faster, but can be mislead as shown by the lower SR results for the SAT
functions. We hypothesise that this is because the meme population is not converg-
ing in these runs, so the use of fitness inherited from both parents is more “noisy”.

One obvious way to assess memes in the context of multiple solutions (points in
the search space) without ”wasting” evaluations is to reduce the size of the meme
population μm relative to μs. To investigate this, a series of experiments were run
using different size meme populations. After some brief initial experimentation, the
following changes were made to the parameter settings, with the results shown in
Table 11.3:

• The ”#” character in a ”action” string is taken to mean ”invert the current value”.
• The solution population size was increased to 500 and self-adaptive mutation

was applied using the scheme outlined in [820, 823, 850].
• The tournament size in the meme population was increased from 2 to 5. This

effectively reduces the size of the meme population since less fit memes have a
smaller probability of being selected as parents.
• The fitness of each meme is assigned by summing improvement that meme

caused in different solutions divided by the number of calls to the evaluation
function used. However multiple copies of memes were allowed so this po-
tentially provides a mix of what Schoenauer et al. have termed ”extreme” and
”average” value rewards in the context of adaptive operator selection in EAs
[260].

The results of these experiments are presented in Table 11.3 and Figure 11.6, and
can be summarised as follows:

• Overall the COMA algorithms are clearly more effective (higher SR) than the
GA and SMA.
• Although not shown for reasons of clarity, the coevolutionary memetic algo-

rithms are also overall more efficient (lower AES) than the GA or SMA.

186 J.E. Smith

Table 11.3. Success Rates of different functions as number of memes is varied

H
-IF

F
T

rap
M

ax-S
at

A
lgorithm

16
32

64
128

256
512

1024
Total

40
80

120
160

200
Total

50
100

Total

C
TA

-pop-10
50

48
45

24
23

15
5

210
48

46
34

34
32

194
196

40
236

C
TA

-pop-50
50

50
49

46
37

39
31

302
50

47
49

48
44

238
229

49
278

C
TA

-pop-100
50

50
50

44
42

37
29

302
50

50
50

49
49

248
232

54
286

C
TA

-pop-200
50

50
50

46
40

39
34

309
50

50
50

50
50

250
257

62
319

C
TA

-pop-400
50

50
50

48
41

36
29

304
50

50
50

50
50

250
260

56
316

G
A

50
33

2
0

0
0

0
85

30
3

0
0

0
33

100
15

115

C
T

G
-pop-10

50
49

42
34

30
17

9
231

50
39

39
36

32
196

212
45

267

C
T

G
-pop-50

50
50

47
47

41
34

33
302

50
50

47
45

45
237

224
49

273

C
T

G
-pop-100

50
50

49
49

41
37

31
307

50
50

50
50

48
248

247
49

296

C
T

G
-pop-200

50
50

50
46

44
38

33
311

50
50

50
50

50
250

247
61

308

C
T

G
-pop-400

50
50

50
49

41
36

38
314

50
50

50
50

50
250

257
57

314

S
M

A
-G

50
49

24
1

0
0

0
124

38
6

0
0

0
44

246
48

294

11 Self-adaptative and Coevolving Memetic Algorithms 187

Fig. 11.6. Average Evaluations to Success on Trap (bottom) and H-IFF (top) functions as a
function of length and number of memes. Error bars represent 95% conficence intervals for
mean, grouping within each length is (l to r) 10,50,100,200,400 memes.

• On average there is little difference in effectiveness or efficiency between the
fixed (CTG) and adaptive (CTA) pivot rules.
• Adapting the pivot rules creates more reliably efficient methods - the 95% con-

fidence intervals for the AES are smaller for the CTA than for the corresponding
CTG algorithms.

188 J.E. Smith

• The algorithms with low numbers of memes (μm ∈ {10,50}) are less effec-
tive. This may well arise from premature convergence or loss of diversity in the
meme population, which could be ameliorated by reducing the selection pres-
sure or increasing the mutation rate.
• The variation in efficiency reduces as the number of memes is increased - for

similar reasons to the previous observation.
• The algorithms with 200 memes are the most effective (highest overall SR,

especially on H-IFF and MAX-SAT) whilst not being significantly less effective
than the algorithms with 400 memes (AES values not significantly different
with 95& confidence).

Of particular interest is the relationship between the time taken to solve problems,
and their length. As can be seen there appears to be a linear trend in Figure 11.6
- although the logarithmic scale should be noted. This is most evident for the H-
IFF functions where a wider range of lengths is used. Using the SPSS tool to fit a
curve to results for CTA, pooling the results for 200 and 400 memes reveals that
a relationship of the form AES = 233.3 · len1.018 accounts for over 80% of the
variation in solution times.

11.8 Conclusions

This chapter describes a conceptual framework within which self-adaptive and co-
evolutionary memetic systems can be examined. Starting with systems which self-
adapt the choice of which meme to use from a fixed set, and then moving through
self-adaptation of the meme behaviours to a full co-evolutionary system, experimen-
tal results show progressively enhanced problem-solving behaviour using a variety
of mechanisms.

The extension to co-evolution showed that the credit assignment mechanisms is
critical, and selection within the meme population can be affected by noise arising
from a number of sources. Mechanisms such as the use of multiple partners, or
memory have been examined. The most promising appears to be a decoupling of
the two populations with fewer memes than solutions.

Along the way the meme definitions have become progressively richer - permit-
ting wildcards, inversion, and length adaptation in the pattern matching, and adapt-
ing the choice of pivot function. The stage is now well prepared for the use of richer
definitions such as GP-like functions, which may be application specific as used
elsewhere e.g. evolving MAX-SAT solvers using primitive elements derived from
other heuristics [288, 461].

	Self-adaptative and Coevolving Memetic Algorithms
	Introduction
	Background
	MAs with Multiple LS Operators
	Self-adaptation in EAs
	Co-evolutionary Systems

	A Framework for Self-adaption and Co-evolution of Memes and Genes
	Specifying Local Search
	Adapting the Specification of Local Search

	Test Suit and Methodology
	The Test Suite
	 Experimental Set-Up and Terminology

	 Self-adaptation of Fixed and Varying Sized Rules
	Self-adapting the Choice from a Fixed Set of Memes
	Self-adaptation of Meme Definitions
	Results on Trap Functions
	Analysis of Results and Evolution of Rule Base
	Benchmarking the Self-adaptive Systems
	Summary of Self-adaptive Results

	Extension to True Co-evolution: the Credit Assignment Problem
	Results: Reliability
	Results: Efficiency

	Varying the Population Sizes
	Conclusions

