
Chapter 1
Basic Concepts

Ferrante Neri and Carlos Cotta

1.1 What Is Optimization?

In every day life, we always have to make decisions, e.g. the path to choose in order
to go back home from work, the brand of milk in a supermarket, whether to watch
football or a movie on TV, etc. Some of these choices appear to us obvious while
some other choices require some thinking. Regardless of the context, decisions are
usually made in order to reach a certain goal or satisfy a given necessity. For ex-
ample, in the case of going back home from work, a reasonable goal would be to
choose a path which leads us back home in the shortest possible time. Let us assume
that the path should be performed by walking. In this case, the solution for the prob-
lem is likely to be the shortest path. This would be a simple optimization problem.
If the goal would be to be at home at the earliest time after having bought some-
thing in the city center, e.g. a visit a shop, we have to exclude some of the possible
paths. More specifically, we have to take into account only the paths which pass
through the shop. The path having the latter features are said to be feasible while
all the others are infeasible. The newly stated problem is a constrained optimization
problem. If an additional goal, beside being back at home in the shortest possible
time, is to take the opportunity for having some physical activities by means of a
long walk, two conflicting objectives must be taken into account and a compromise
must be accepted (e.g. a path that is not too long as to get home reasonably early but
also not too short as to have at least some physical activity). Due to the presence of
two simultaneous and conflicting goals, the latter is a multi-objective optimization
problem.

Ferrante Neri
Department of Mathematical Information Technology, P.O. Box 35 (Agora), 40014,
University of Jyväskylä, Finland
e-mail: ferrante.neri@jyu.fi

Carlos Cotta
Dept. de Lenguajes y Ciencias de la Computación. Universidad de Málaga,
Campus de Teatinos, 29071 Málaga, Spain
e-mail: ccottap@lcc.uma.es

F. Neri et al. (Eds.): Handbook of Memetic Algorithms, SCI 379, pp. 3–7.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

ferrante.neri@jyu.fi
ccottap@lcc.uma.es

4 F. Neri and C. Cotta

More mathematically, let us consider a solution x, i.e. a vector of n design vari-
ables (x1,x2, . . . ,xi, . . . ,xn). Each of the design variable xi can take values from a
domain Di (e.g., an interval [xL

i ,x
U
i] if variables are continuous, or a certain dis-

crete collection of values otherwise). The Cartesian product of these domains for
each design variable is called the decision space D . Let us consider a set of func-
tions f1, f2, . . . , fm defined in D and returning real values. Under these conditions,
the most general statement of an optimization problem is given by the following
formulas:

Maximize/Minimize fm m = 1,2, . . . ,M

sub ject− to g j (x) � 0 j = 1,2, . . . ,J

hk (x) = 0 k = 1,2, . . . ,K

xL
i � xi � xU

i i = 1,2, . . . ,n

(1.1)

where g j and hk are inequality and equality constraints, respectively.
From the definition above, we can easily see that if m = 1 the problem is single-

objective, while for m > 1 the problem is multi-objective. The presence/absence of
the functions g j and hk make the problem more or less severely constrained. Finally,
the continuous or combinatorial nature of the problem is given by the fact that D is
a discrete or dense set. In other words, all the problems considered in this book can
be considered as specific cases of the general definition in equations (1.1).

In the continuous case, for each m the detection of a maximum or minimum point
requires the detection of those points characterized by a null gradient, i.e.:

∇ f =

⎡
⎢⎢⎢⎢⎣

∂
∂x1
∂
∂x2

. . .
∂
∂xn

⎤
⎥⎥⎥⎥⎦

= 0̄ (1.2)

In general, in a multidimensional continuous decision space D , there are several
points satisfying the condition in eq. (1.2). Some of these points are minima, some
are maxima and some are saddle points. While solving an optimization problem,
e.g., a minimization, it is fundamental to distinguish the three kinds of point. In order
to distinguish them, the determinant of the Hessian matrix should be discussed.
More specifically, the Hessian matrix is:

H (x) =

⎡
⎢⎢⎢⎢⎢⎣

∂ 2 f
∂x2

1

∂
∂x1

∂
∂x2

f . . . ∂
∂x1

∂
∂xn

f

∂
∂x2

∂
∂x1

f ∂ 2 f
∂x2

2
.

.
∂
∂xn

∂
∂x1

f ∂ 2 f
∂x2

n

⎤
⎥⎥⎥⎥⎥⎦

(1.3)

In order to check whether a point x0 is a minimum, a maximum, or a saddle point,
the determinant Δ of the Hessian matrix must be checked. If

1 Basic Concepts 5

Δ > 0 and
∂ 2 f

∂x2
0

> 0, (1.4)

x0 is a local minimum; if

Δ > 0 and
∂ 2 f

∂x2
0

< 0, (1.5)

x0 is a local maximum; if Δ < 0, x0 is a saddle point.
The situation is much more subtle in the case of combinatorial domains, in which

the notion of locality for optima is associated to a particular definition of neighbor-
hood among the discrete elements in D .

1.2 Optimization Can Be Hard

In real-world applications, it is usually not so important to detect local optima. The
global optimum is usually of interest for engineers and practitioners. Thus, in princi-
ple, all the null gradient points should be detected and analyzed before selecting the
global optimum. In practical problems, this set of operations is not always possible
as often the objective function is not differentiable within the entire decision space,
or is not even available in an explicit analytical form (being e.g. a procedure, a sim-
ulation, or an experiment measurement). In addition, it must be remarked that from
an engineering/application viewpoint it is fundamental to detect a solution which
displays a high performance and it is usually irrelevant whether or not this solution
corresponds to a null gradient.

When regarded from a computational perspective, the above ideas can be char-
acterized in terms of computational complexity. Assuming a certain computational
framework (e.g., Turing machines), it is possible to measure the amount of resources
(time or space to give two distinguished examples) that a certain algorithm requires
in order to fulfill its objective, e.g., finding the global optimum for a certain opti-
mization problem. By analyzing the growth of such resource consumption in terms
of the size of the problem instance considered it is possible to define complex-
ity classes of problems. More precisely, we can denote as REC(f (n)) the class of
problems for which there exists an algorithm (not necessarily the same algorithm
for all problems in the class) that solves any instance of size n using at most f (n)
units of resource REC. It is customary –yet sometimes unrealistic– to consider that
a problem is tractable if it can be solved in polynomial time, i.e., if it belongs to
class TIME(nk) for some fixed k. In case of decision problems (those for which a
yes/no response is sought), this definition amounts to the well-known class P.

Using the notion of reduction (an efficient1 mechanism for transforming an in-
stance of problem A into an instance of problem A′), we can define a problem A as
C-hard if any problem in class C can be reduced to A (hence A is at least as hard to
solve as any problem in C). If a problem is C-hard and also belongs to class C, it is

1 The notion of efficiency here refers to the particular complexity class under consideration,
e.g., polynomial time when studying classes in the polynomial hierarchy [701].

6 F. Neri and C. Cotta

termed C-complete. Problems complete for a class are useful in characterizing the
actual complexity of the class.

It turns out that many interesting problems are NP-complete when their deci-
sion version is considered, that is, they can be solved in polynomial time by a
non-deterministic Turing machine (or alternatively, a yes-solution can be verified
in polynomial time). Clearly, class P is a subset of class NP and, although yet un-
proven, it is widely believed that P is a proper subset of NP, i.e., P�=NP. This means
that no efficient –polynomial-time– algorithm is known to solve the problem to op-
timality. Furthermore, many real-world problems can also be shown to be hard to
approximate, i.e., there exist no efficient algorithm capable of providing solutions
whose quality is guaranteed to be within a certain distance of the optimum (several
complexity classes can be defined in terms of the approximation ratios attainable
[907]).

This complexity barrier can be dealt with using two different (and complemen-
tary) approaches. The first one is the use of parameterized complexity techniques.
These techniques try to factor out some part of the problem input as a parameter
k, and provide TIME(f (k)nc) (where c is a constant that does not depend on the
parameter k and f (·) is an arbitrary function of k) algorithms for these problems.
Assuming realistic instances of the problems would just exhibit low parameter val-
ues k, these algorithms turn out to provide efficient solutions to the problems under
consideration (which are thus termed fixed-parameter tractable). The second poten-
tial approach is the use of metaheuristics, as discussed next.

1.3 Using Metaheuristics

When hypotheses on the optimization problem cannot be made, a general purpose
optimization algorithm/procedure must be implemented for solving the problem or
at least detecting some solutions with a high performance. General purpose algo-
rithms are usually referred as metaheuristics from the ancient Greek words ���� and
�����	
 , i.e., literally “I search beyond” or more generally “beyond the search”, in
the sense that the search can be done at an abstract level to the result of another
search procedure.

Metaheuristics have been developed during the last decades jointly with the
progress of computational hardware and, nowadays, there exists a huge variety of
general purpose optimization algorithms. Some of them get their inspiration from
the nature, e.g. evolutionary principles, physical phenomena, animal behaviour, etc.,
in order to tackle the problem. These nature inspired methods are also known as
Computational Intelligence Optimization algorithms since they use Computational
Intelligence (CI) to face optimization problems. Traditionally, CI was identified as
subject including Fuzzy Systems, Neural Networks and Evolutionary Computation.
This definition appears today too restrictive and outdated, since other recently de-
fined algorithmic structures, such as Swarm Intelligence, can also fit within CI.
Amongst these emergent metaheuristics or, if we prefer, CI optimization algorithms,
Memetic Algorithms (MAs) represent a successful story which developed during the

1 Basic Concepts 7

last two decades and are year after year becoming an important CI paradigm which
allows the solution of complex optimization problems.

This book attempts to explain in depth the algorithmic and implementation as-
pects of this paradigm, its variations in optimization problems under specific cir-
cumstances, some implementation in specific application domains, and finally the
historical context where the terms have been coined and the early implementations
have been performed. More specifically, this book is divided into four parts, the first
about basic concepts and algorithmic components, the second is about specific MA
implementations and problems, and the third part is about MA applications. Finally,
the last part gives some historical background and biographical notes regarding the
earliest definition of MAs.

Acknowledgements. F. Neri is supported by the Academy of Finland, Akatemiatutkija
130600, Algorithmic Design Issues in Memetic Computing. C. Cotta is partially supported
by Spanish MICINN under project NEMESIS (TIN2008-05941) and by Junta de Andalucı́a
under project TIC-6083.

	Basic Concepts
	What Is Optimization?
	Optimization Can Be Hard
	Using Metaheuristics

