
Chapter 12
Memetic Algorithms and Complete Techniques

Carlos Cotta, Antonio J. Fernández Leiva, and José E. Gallardo

12.1 Introduction

As mentioned in previous chapters in this volume, metaheuristics (and specif-
ically MAs) have a part of their raison d’etre in practically solving problems
whose resolution would be otherwise infeasible by means of other non-heuristic
approaches. Such alternative non-heuristic approaches are complete methods that
–unlike heuristics– do guarantee that the deviation from optimality of the solution
they will provide is somehow bounded (and as a particular case, that the optimal
solution will be found). These methods are eventually limited by the curse of di-
mensionality, yet they may still constitute a very interesting resource either from the
application point of view, or from the lessons that can be learnt from them. Indeed,
in some sense these approaches could be considered complementary to metaheuris-
tics rather that mere “rivals”. Even more so in the case of MAs, whose philosophy
has been since its inception much more flexible and integrative rather than dogmatic
or exclusive.

This said, despite the eclosion of metaheuristics as powerful optimization tech-
niques during the 80s and 90s, inter-breeding between the fields of provably problem-
solving and heuristic problem-solving was relatively limited until the last decade
(some seminal works dating back from the mid 90s – e.g., [165]). The last years
however have witnessed a remarkable increase in the number of works trying to
combine ideas from these two areas. Certainly, MAs have also played an important
role in this cross-fertilization of search paradigms. Along this chapter we will re-
view some of the lines of research that have emerged in this regard. To this end,
we will begin by briefly revisiting complete techniques to highlight their strengths
and weaknesses, and what they have to offer to metaheuristics. Subsequently, we
will outline some of the efforts that have been made in the literature to classify
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Dept. Lenguajes y Ciencias de la Computación, Universidad de Málaga,
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hybrid approaches. Although these classifications are usually general and intended
to cover more than just complete-heuristic combinations, they will provide a frame-
work within which actual combinations of MAs with exact techniques (or from the
broad interpretation of memetic algorithms, MAs incorporating exact techniques)
can be studied. This will be done in Sections 12.4 and 12.5.

12.2 Background

Complete techniques are those whose results can be proved to be at bounded dis-
tance from the optimum. From a very general point of view, these techniques can be
further subdivided into techniques that guarantee finding the optimal solutions, i.e.,
exact techniques, and techniques that only provide a fixed or adjustable bound (that
is, a bound that can be reduced by spending more computational effort), i.e., approx-
imation techniques. Curiously, and this is something that may be worth some further
analysis from a sociological and/or philosophical point of view, the community of
researchers working on approximation theory has been traditionally more skeptical
with respect to the value of metaheuristic optimization. Conversely, it is also true
that the usefulness of approximation algorithms has not been always appreciated by
the metaheuristic community, in part due to the inherent limitations of the former in
many practical contexts – see for example [224] for a glimpse of the computational
complexity of PTAS (a polynomial time approximation scheme, probably one of the
jewels of the crown in approximation theory) for several common problems.

Focusing thus on exact techniques, such as for example branch and bound [507],
dynamic programming [57], branch and cut [654], etc. these are characterized by the
fact that they guarantee finding optimal solutions at the cost of a non-polynomial
growth of computation time (and often memory consumption too). Their limita-
tions are those emanating from the theory of computational complexity, such as the
conspicuous P vs NP question. It must be noted however that such classical (unidi-
mensional) hardness characterizations are not necessarily correlated with practical
performance. A much more interesting characterization can be obtained from the
field of parameterized complexity [221], in which hardness is approached from a
multidimensional perspective, factoring out some parameter(s) from the input and
trying to isolate the problem’s difficulty in them. If this can be done –formally, if the
complexity of the problem can be shown to be polynomially related to the input size
(once the parameter is factored out), and the degree of the polynomial is unrelated
to the value of the parameter– the problem is said to be fixed-parameter tractable
(FPT). FPT problems can be solved for small values of the parameter using the ar-
senal developed by the parameterized-complexity community – e.g., [667]. Hard
problems can be nevertheless detected from a parameterized perspective, and for
such problems metaheuristics are fully in order.

There are many ways in which the hybridization of metaheuristics in general
(and MAs in particular) with exact techniques can be fruitful: exact techniques can,
for example, reduce their resource consumption if they obtain valuable input from
metaheuristics (e.g., improved bounds); on the other hand, metaheuristics routinely
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Fig. 12.1. Puchinger and Raidl’s classification of exact-heuristic hybrid algorithms.

use search mechanisms –recombination, mutation, etc.– in which exact techniques
can play an important role to intensify the search. Furthermore, hybridization of
MAs and exact techniques can be defined at several nested levels thus providing
multiple ways of boosting each other’s performance. In the following we will survey
some successful hybridization models reported in the literature along these lines just
depicted. Subsequently, we will overview several approaches to classify these hybrid
models.

12.3 Classification of Hybridization Approaches

Several taxonomical attempts have been proposed to classify hybrid optimization al-
gorithms. For example, Talbi [872] proposed a mixed hierarchical-flat classification
scheme. The hierarchical component captured the structure of the hybrid, whereas
the flat component specified the features of the algorithms involved in the hybrid.
More precisely, the hierarchical portion of the taxonomy firstly distinguished be-
tween low-level (a given function of a metaheuristic is replaced by another meta-
heuristic) and high-level (combined algorithms are self-contained) hybridization.
Secondly, it was distinguished between relay hybridization (a set of metaheuristics
is applied in a pipeline fashion) and teamwork hybridization (cooperative optimiza-
tion models). Cotta [147] proposed another related taxonomy with the dichotomy
strong vs. weak as its root. This distinction referred to whether problem-knowledge
was placed in the core of the algorithm, affecting its internal components (e.g., rep-
resentation and/or genotype-phenotype mapping, operators, etc.), or in the combi-
nation of different search algorithms that retained their identity. This terminology
is consistent with the classification of problem-solving strategies in artificial intelli-
gence as strong and weak methods [595].
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A much more interesting classification for the purposes of this chapter is that
proposed by Puchinger and Raidl [741]. This classification is specifically intended
for exact-metaheuristic combinations, and establishes two main categories for such
hybrid algorithms:

• Collaborative combinations, where an exact algorithm and a metaheuristic
method exchange some information, but none of them are part of the other,
and
• Integrative combinations, where one technique is a subordinate of the other, i.e.,

there is a master algorithm that uses the other one.

These two categories can be further refined depending on the particular of the com-
bination as shown inf Figure 12.1. Thus, a collaborative combination can be se-
quential or parallel/intertwined, depending on how the control flow passes from one
algorithm to the other. Similarly, an integrative combination can be subdivided in
models in which an exact technique plays the role of master (i.e., the metaheuristic
is embedded in an exact technique), and models in which the opposite is true.

As mentioned before, this latter classification fits nicely into context of this chap-
ter, so we will consider it in order to survey existing hybrid approaches combining
MAs and exact techniques.

12.4 Integrative Combinations

One basic form of integrative collaboration consists of endowing a memetic algo-
rithm with an exact technique (ET) so that this ET is a subordinate of the MA. The
most common implementation consists of combining an EA with a procedure to
perform a complete local search (which can consider the whole neighborhood and
in this sense can be viewed as an exact technique). This is usually done after evalu-
ation, although it must be noted however that the integration does not simply reduce
itself to this particular scheme. In fact, the purpose of using an ET inside a MA is
to provide specific knowledge that can help to a better optimization process. For
instance, Algorithm 22 shows a general picture of where an ET can be incorporated
inside an MA.

As it can be seen, during the initialization of the population some complete
method may be used to generate high quality initial solutions. Of course, this com-
plete method may only consider a subset of the search space, a relaxed version of
the problem, or may perform just a truncated search, since otherwise the problem
would just be solved at that stage (not to mention the computational cost). An exam-
ple of relaxed initialization using complete techniques can be found in [148], where
a backtracking algorithm is used to create feasible initial solutions for a protein
structure prediction problem (thus relaxing optimality to mere feasibility). Another
related approach will be discussed in next subsection in the context of collabora-
tive models, and considers a variant of a B&B algorithm –namely beam search– to
initialize the population of a MA with the aim of improving its performance. In ad-
dition to this an exhaustive LS could be applied to improve the individuals generated
initially with the aim of providing a first population of better quality. This procedure
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Algorithm 22. Pseudocode of a basic MA based on a integrative collaboration
with an exact technique ET

for i ∈ {1, . . . , POPULATION SIZE} do1

pop[i]←RANDOM-SOLUTION();2

if Rand[0,1] < pET then // ET is applied with probability pET3

EXACT-TECHNIQUE (pop[i]); // Usually ET = Local4

Improvement

endif5

endfor6

i← 0;7

while i < MaxEvals do8

RANK-POPULATION (pop); // sort population according to9

fitness
parent1←SELECT (pop);10

if Rand[0,1] < pX then // recombination is done11

parent2← SELECT (pop);12

child← RECOMBINE (parent1, parent2); // RECOMBINE might be an13

Exact Technique

else14

child← parent1;15

endif16

child← MUTATE (child, pM); // pM is the mutation probability17

per gene
if Rand[0,1] < p′ET then // ET is applied18

EXACT-TECHNIQUE (child); // Usually Local Improvement19

applied here

endif20

pop[μ]← child; // replace worst21

endw22

return best solution in pop;23

is intimately related to the idea of local branching by Fischetti and Lodi [263], and
to Congram’s Dynasearch [138, 139].

Another proposal that can be devised from the general schema shown above is the
use of an ET as a recombination operator. Recombination or mutation operators can be
intelligently designed so that specific problem knowledge is used in order to improve
the offspring. For instance, Cotta et al. [165] used a problem-specific B&B approach
for the Travelling Salesman Problem based on 1-trees and the Lagrangean relaxation
[910], to build a hybrid recombination operator. More precisely, the B&B was used
in order to build the best possible tour within the (Hamiltonian) subgraph defined
by the union of edges in the parents. This recombination procedure was costly, but
provided better results than blind edge recombination. This model was later extended
to a more general operator termed dynastically optimal recombination (DOR) [164].
The term refers to the dynastic potential, which in the framework of Forma Analysis
[750] denotes the set of children attainable from a certain set of parents. DOR thus
consists of finding the best children in this dynastic potential, i.e., that with the best
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combination of parental features. This is done by “intelligently” exploring this set,
using an adequate complete algorithm, check e.g. [163].

Related to the previous approach, [295] presented a memetic algorithm, embed-
ded with tabu search, for weighted constraint satisfaction problems (see next section
for a more detailed discussion of this kind of problems) in which bucket elimina-
tion (BE) [202] is used as a mechanism for recombining solutions, providing the
best possible child from the parental set. BE is an exact technique related to dy-
namic programming which based on variable elimination and is commonly used for
solving constraint satisfaction problems. This algorithm, with another collaborative
proposals, was applied to the resolution of the maximum density still life problem,
a hard constraint optimization problem based on Conway’s game of life.

Additionally, problem knowledge can be incorporated in the genotype to phe-
notype mapping present in many MAs, like when repairing an infeasible solution.
This technique is used, for instance, in the MA designed by Chu and Beasley [127]
for the multidimensional 0-1 knapsack problem. The use of complete techniques,
again relaxed or truncated, can be here considered as well, check, e.g., [148] for an
example of using backtracking to repair infeasible solutions.

Another place where an exact method can be particularly useful when used inside
an MA is in the optimization of problems where different representations are consid-
ered. In these cases, an exact technique can be specifically useful in the codification-
decodification phase. For instance, Puchinger and Raidl [742] represented another
attempt to incorporate exact methods in metaheuristics. This work considered dif-
ferent heuristics algorithms for a real world glass cutting problem and a combined
GA and B&B approach was proposed. The GA used an order-based representation
that was decoded with a greedy heuristic. Incorporating B&B in the decoding for
occasionally (with a certain probability) locally optimizing subpatterns turned out
to increase the solution quality in a few cases.

Note also that applying always the ET in each generation of the MA (or initially
on each individual in the initial population) is not always the best option (as shown
in [858] for the application of LS on each generated new individual). For instance,
if one considers LS as the technique to embed inside a MA, partial Lamarckianism
[396], namely applying local search only to a fraction of individuals, can result
in better performance. These individuals to which local search will be applied can
be selected in many different ways [665]. Thus, LS can be applied to improve the
individual with certain probability pLS; in case of application, the improvement uses
up a number of LSevals evaluations (or in the case of specific local search such as
HC, until it stagnates, whatever comes first). It is easy to extrapolate these results
from the use of LS to any ET embedded in a MA.

In general, the underlying idea of this kind of integration is to combine the inten-
sifying capabilities of the embedded ET method, with the diversifying features of
MA, i.e., the population will spread over the search space providing starting points
for a deeper (probably local) exploration. As generations go by, promising regions
will start to be spotted, and the search will concentrate on them. Ideally, this com-
bination should be synergistic, providing better results that either the MA or the
ET by themselves. Regarding this issue, one can find in the literature a number of
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proposals that explore the intensification/diversification balance within the memetic
algorithm. Some works lean towards a more explorative combination, by using a
blind recombination operator in the MA whereas other models incorporate an in-
tense exploration of the dynastic potential of the solutions being recombined.

The other possibility for integrative combinations is to incorporate a metaheuris-
tics into an exact algorithm. One example is the hybrid algorithm combining Genetic
Algorithms and Integer Programming B&B approaches to solve MAX-SAT prob-
lems described in [287]. This hybrid algorithm gathered information during the run
of a linear programming-based B&B algorithm, and used it to build the population
of an EA population. The EA was eventually activated, and the best solution found
was used to inject new nodes in the B&B search tree. The hybrid algorithm was run
until the search tree was exhausted, and hence it is an exact approach. However, in
some cases it expands more nodes than the B&B algorithm alone.

12.5 Collaborative Combinations

As mentioned in Section 12.3, the class of collaborative combinations includes hy-
brid algorithms which exchange information, but such that none of them is a sub-
ordinate of the other. Two subcases can be here considered in order to execute both
algorithms:

• Sequential execution, in which one of the algorithms is completely executed
before the other. Examples of this group are those in which one of the techniques
can act as a kind of preprocessing for the other or those where the result of one
algorithm can be used as data to initialize the other.
• Parallel or intertwined execution, where both techniques are executed simulta-

neously, either in parallel (i.e., running at the same time on different processors)
or in an intertwined way by alternating between both algorithms.

As an example of sequential combinations we can cite the work of Klau et al. [469],
in which a branch and cut algorithm is used analogously to the idea of dynastically
optimal recombination mentioned in previous section, to combine the final popu-
lation provided by a MA. This hybrid algorithm is applied to the prize-collecting
Steiner tree problem. We will focus here on hybrid collaborative techniques in the
second group. MAs and B&B techniques can be integrated by way of a direct collab-
oration, so that both techniques work alone in parallel (i.e., both processes perform
independently) at the same level. Under this scheme, both processes will share the
incumbent solution to the problem being solved. Whenever one of the algorithms
finds a better approximation, it can update the solution. Two straightforward ways
of obtaining a benefit of this parallel execution are [165]:

• The B&B algorithm can use the lower bound provided by the MA to purge its
problem queue. Problems whose upper bound are smaller than the one obtained
by the MA cannot improve the incumbent solution and can be safety removed.
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• The B&B algorithm can provide information about more promising regions of
the search space into the MA population. The aim of this process is to to guide
the MA search towards these promising regions of the search space.

Several implementations of these schemes are possible. For example, Cotta et al.
[165] proposed a collaborative approach such as the one described above for the
TSP. Puchinger and Raidl [740] consider the parallel combination of a MA and a
branch and cut algorithm for the multidimensional knapsack problem. The MA pro-
vides improved bounds to the branch and cut algorithm, and the latter provides both
new best-so-far solutions and the corresponding dual variable values, to be used for
repairing and local search. More recently, Gallardo et al. [294] defined a hybrid al-
gorithm that starts by running a MA (with a randomly initialized population) in iso-
lation, so that a first approximation to the solution is obtained. This initial solution
is later used by a B&B algorithm to purge its problem queue. As it can be seen, no
information from the B&B algorithm was used in this first execution of the MA. In
a subsequent phase, the B&B algorithm starts its execution. New solutions found by
the B&B are incorporated into the MA population (by replacing the worst individ-
ual). Whenever a new solution is found, the B&B phase is paused and the MA is run
to stabilization. In addition, pending nodes in the B&B queue are incorporated into
the MA population periodically. The intention of this transfer is to direct the MA to
these regions of the search space, that represent the subset of the search space still
unexplored by the Branch and Bound. In this way, the MA is used for finding prob-
ably good solutions in those regions. Upon finding an improved lower bound (or
upon stabilization of the MA if no improvement is found), B&B is resumed. This
process is repeated until the search tree is exhausted, or a time limit is reached. One
interesting property of this hybrid algorithm is that it acts as an anytime algorithm,
providing both a quasi-optimal solution, and an indication of the maximum distance
to the optimum. In [293, 294] this implementation schema is used to tackle large
instances of the multidimensional knapsack problem. Experimental results showed
that the hybrid approach can provide high quality results, better than those obtained
by the MA and B&B on their own.

An alternative implementation of the previous model consist on using beam
search (BS)[46] instead of B&B. This is an incomplete derivative of the later and
acts thus as an heuristic method. In essence, BS extends every partial solution from
a set B (called the beam) in at most kext possible ways, generating a new beam.
When all solutions in B have been extended, the algorithm reduces the new beam
by selecting the best up to kbw (called the beam width) solutions and proceeds. A
very interesting feature of this heuristic is that it extends in parallel a set of different
partial solutions in several possible ways. For this reason, it can be used to provide
periodically diverse promising partial solutions to a population based search method
such as a MA. A general description of the resulting hybrid algorithm is given in
Algorithm 23.

The beam search part of the algorithm can be iterated for each level of the search
tree that corresponds to the problem at hand. The hybrid algorithm starts by exe-
cuting this process for an initial number of levels (parameter l0 of the algorithm).
Subsequently, both parts of the hybrid algorithm are alternatively executed until a



12 Memetic Algorithms and Complete Techniques 197

Algorithm 23. Beam Search + MA hybrid algorithm

for l0 levels do run BS;1

repeat2

select popsize nodes from problem queue;3

initialize MA population with selected nodes;4

run MA;5

if MA solution better than BS solution then6

let BS solution←MA solution;7

endif8

for l levels do run BS ;9

until timeout or tree-exhausted ;10

return BS solution;11

termination condition is reached. Similar to the first implementation, for every exe-
cution of the MA, its population is initialized using the nodes in the BS queue. As
the size of the BS queue is usually larger than the MA population size, a criteria,
such as selecting the best nodes according to some measure of quality or selecting
a subset that provides high diversity, has to be used in order to select a subset from
the queue. Nodes in the BS queue represent partial solutions in which some genes
are fixed but others are indeterminate, so they must first be converted to full solu-
tions in a problem dependent way. This must be considered when instantiating the
general template for different combinatorial problems. This kind of collaborative in-
tegration of Beam Search and MAs has been used to tackle different combinatorial
optimization problems. In [297] the hybrid algorithm was experimentally evaluated
on the multidimensional 0-1 knapsack problem and on the shortest common super-
sequence problem, a NP-hard classical problem from the realm of string analysis.
For both problems, it was shown the benefits of using the hybrid approach when
compared to the constituents algorithms. Additionally, an analysis of the dynamics
and sensitivity on different parameters of the algorithm was carried out. In [298],
the hybrid algorithm was applied to the inference of phylogenetic trees, an impor-
tant problem in Systematic Biology, that aims to represent the evolutionary history
for a collection of organisms. That work focused in the ultrametric model for phylo-
genetic inference. A robust setting for the different parameters of the algorithm was
determined, and the hybrid algorithm was experimentally shown to also be syner-
getic for this problem.

A related hybridization model has been defined in [299] for weighted constraint
satisfaction problems (WCSP) [795]. A WCSP is a constraint satisfaction problem
(CSP) in which preferences among solutions can be expressed. Formally, a WCSP
can be defined by a tuple (X ,D ,F ), where D = {D1, · · · ,Dn} is a set of finite do-
mains, X = {x1, · · · ,xn} is a set of variables taking values from their finite domains
and F is a set of cost functions (also called soft constraints or weighted constraints)
used to declare preferences among possible solutions. Each f ∈F is defined over a
subset of variables, var( f ) ⊆X , called its scope. The objective function F –to be
minimized– is defined as the sum of all functions in F , i.e., F = ∑ f∈F f . WCSP
were tackled using a algorithmic model based on the hybridization of MAs with
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Fig. 12.2. Schematic description of the multilevel hybrid algorithm.

exact techniques at two levels: within the MA (as an embedded operator), and out-
side it (in a cooperative model). Figure 12.2 depicts the different components of
the algorithm and their relationships. The first level of hybridization has already
been described in Section 12.4, so we will describe here the second level, in which
the MA cooperates with a beam search algorithm that further uses the technique of
mini-buckets as a lower bound.

Algorithm 24. Hybrid algorithm for a WCSP

sol← ∞;1

B←{ () };2

for i← 1 to n do3

B′ ← {};4

for s ∈B do5

for a ∈ Di do6

B′ ←B′ ∪ {s · (xi = a)} ;7

endfor8

endfor9

B← select best kbw nodes from B′;10

if i � kMA then11

initialize MA population with best popsize nodes from B′;12

run MA;13

sol←min (sol,MA solution);14

endif15

endfor16

return sol;17

The proposed hybrid algorithm, that executes BS and the MA in an interleaved
way, is depicted in Algorithm 24. Here, a (possibly partial) solution for a WCSP
instance is represented by a vector of variables s = (x1,x2, . . . ,xi), i � n, where
s · (xi = a) stands for the extension of partial solution s by assigning value a to its
i-th variable. The hybrid algorithm proceeds by constructing a search tree, so that its
leaves are complete solutions to the problem and internal nodes at level i represent
solutions that are partially specified up to the i-th variable. The algorithm traverses
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this tree heuristically in a breadth first way using a BS algorithm that only maintains
the best kbw nodes at each level of the tree. During each iteration of BS (lines 5-
16), a variable is assigned for every solution in the beam (line 8). The interleaved
execution of the MA starts only when partial solutions in the beam have at least kMA

variables (line 12). For each iteration of BS, the best popsize solutions in the beam
are selected with the purpose of initializing the population of the MA (line 13). The
solution provided after the execution of the MA is used to update the incumbent
solution (sol), and this process is iterated until the search tree is exhausted.

The performance of this algorithm will depend on the quality of the heuristic
function used to estimate partial solutions (line 11). In order to compute tight,
yet computationally inexpensive, lower bounds for the remaining part of the so-
lutions, the technique of mini-buckets (MB) can be used. As described by Kask and
Dechter[445], the intermediate functions created by applying the MB scheme can be
used as a general mechanism to compute heuristic functions that estimate the best
cost of yet unassigned variables in partial solutions. This can be achieved by run-
ning MB as a preprocessing stage. The set of augmented buckets computed during
this process can be used as estimations of the best cost extension to partial solutions
(check [445] for details).

In [296, 299], such a multilevel algorithm was used to tackle the Maximum Den-
sity Still Life Problem, a hard constrained problem defined in the context of John
Conway’s game of life. The resulting algorithm was able to find optimal solutions
for currently solved instances of the problem in considerable less time that state-of-
the art approaches. Additionally, it was able to find new best known solutions for
very large instances whose exact solutions are yet unknown.

12.6 Conclusions

Throughout this chapter we have surveyed existing work on MAs that incorporate at
some level a complete technique. Several notes have to be done here. Notice firstly
from a ‘terminological’ point of view that many evolutionary techniques hybridized
with complete techniques can be considered memetic regardless of whether a clas-
sical trajectory-based local search algorithm is also used or not. For example, in
an evolutionary algorithm that used an exact technique for recombination, the latter
could be regarded as a generalized local-search operator working on set of solutions
rather than on single solutions, and using a neighborhood composed of all solu-
tions in the corresponding dynastic potential. This is also related to the so-called
crossover hill-climbing idea defined in [536] for continuous optimization.

From a practical point of view, this kind of hybrid approaches must carefully
control the computational complexity of the problems submitted to complete search.
This draws again a connection to parameterized complexity by noting that this com-
plexity is typically related to some structural parameter of the problem (e.g., a higher
similarity of the parents during exact recombination reduces the size of the dynastic
potential, thus making its exploration more amenable in principle). Even though no
efficient (in the FPT sense) algorithmic resolution were available for the problem at
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hand, the combinatorial explosion could be kept within acceptable levels by check-
ing these parameters and resorting to other approaches (truncated exact search, fast
heuristic search, or even a blind procedure) if the possibility of a prohibitive com-
putational cost cannot be excluded prior to a certain invocation of the complete
method.

The any-time nature of MAs has to be considered as well. Whether a hybrid ap-
proach including complete techniques is itself complete or not, it is very important
that it provides better and better solutions for any increasing computational budget
allowed. This is not always possible within the context of complete techniques, e.g.,
a B&B algorithm using a best-first policy may exhaust its allotted time and/or mem-
ory without producing a single feasible solution. On the other hand, the very same
B&B algorithm using a LIFO policy may quickly provide a solution but take a long
time to improve it. MAs are however ideal for anytime search, and this can be ex-
ploited in a synergistic combination. Note for example that a parallel collaborative
model using a MA and an exact technique may end up providing both an upper and
a lower bound for the optimal solution, and the higher the computational budget
available, the tighter these bounds will be.
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