
Chapter 16
Memetic Algorithms in Bioinformatics

Regina Berretta, Carlos Cotta, and Pablo Moscato

16.1 Introduction

Bioinformatics is an exciting research field for memetic algorithms (MAs). Its core
activity is the integration of techniques from Computer Science, Mathematics and
Statistics to address challenging computational problems related with the analysis
of large volumes of data. Due to its huge relevance as a means to understand biology
in the 21st Century, this field has attracted the attention of many pioneers in MAs,
including the authors of this chapter.

During the past two decades, the field of molecular biology and the new high-
throughput technologies associated with it has spawned a number of interesting
problems. These problems can, in many cases, be posed as optimization problems
which are combinatorial, non-linear, and often have aspects of both. Some exam-
ples arise in the analysis of large scale genetic datasets (e.g. gene expression us-
ing microarrays, massive datasets of single nucleotide polymorphisms derived from
genome-wide association studies, etc.).

The field of bioinformatics is characterized by a constant evolution in computa-
tional methods for clustering and feature selection, analysis of phylogenetic trees
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(inference and reconstruction), image processing, protein analysis (structure predic-
tion, sequence alignment), drug therapy design, among many others others. As we
said before, many aspects of these problems are combinatorial in nature, involving
the selection or the arrangement of discrete objects. Many of these combinatorial
problems are NP-optimization problems, thus biologists are generally interested in
finding the optimal solution of a given problem, but if that is impossible to obtain,
they also rely for their investigations in high-quality solutions, provided by some
metaheuristic technique. In this sense, MAs are a good strategy as they can provide
solutions quickly, but then if they are coupled to an exact solver (thus forming a
complete MA – check chapter 12), they can also prove the optimality of the final
solution.

In general, researchers employ exact methods developed by themselves, and
highly crafted for the problem at hand, or rely on Integer Programming reformu-
lations of their problems. References in Mathematical Programming, Integer Pro-
gramming for problems in computational biology can be found in works by Lan-
cia [501] and Althaus et al. [15]. A hands-on approach to modeling using commer-
cial packages can be found in [338] and [278]. Our experience with students, coming
from different academic backgrounds, also suggest that the book by Williams [936],
and the reviews of Greenberg, Hart and Lancia [332] and Festa [259], are not only
useful but they have the added value of being very motivational for those interested
in crossing fields and to jump into this new area. However, it is clear that since the
size of the datasets associated to these challenges problems is, in general, is mas-
sive, in many cases it is necessary to develop efficient metaheuristics to deal with the
large instances of these problems. As usual, research on metaheuristics is important
as it can provide good upper bounding schemes to guide exact search procedures.

This chapter provides an review of MAs that have been developed to address
some of the problems mentioned above. For an eagle’s view of the contents, in Ta-
ble 16.1 the reader can find a list of references grouped by application. For the sake
of completeness we have also included in this table some applications in the wider
area of biomedicine, where applications of memetic algorithms are also manifold.
In particular, it is worth mentioning the deployment of MAs for optimizing cancer
treatment, both in radiotherapy [347, 348] and chemotherapy [519, 520, 894]. Pre-
cisely related to this later issue of drug scheduling we can cite the work of Neri et
al. for HIV multidrug therapy [658]. Imaging applications in tomography and imag-
ing are also numerous [99, 144, 210, 211, 789] (please check [716] for a review of
metaheuristic methods applied to microwave imaging). In the following sections we
will focus on the purely bioinformatic tasks defined in the table though.

16.2 Microarray Data Analysis

With the introduction of DNA microarray technologies, it is now possible mea-
sure the expression of thousands of genes simultaneously. However, this obviously
comes at a price as even a single microarray experiment leads to the need to deal
with large datasets. This has posed a challenge primarily for statistics, as researchers
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Table 16.1. An overview of MA applications in Bioinformatics

Area Subarea Reference

Microarray analysis clustering [406, 592, 698, 840, 841]

gene ordering [167, 576, 631]

feature selection [339, 402, 953, 964, 965,
966]

Phylogenetics inference and reconstruction [153, 155, 157, 298, 767,
937]

consensus tree [723]

Protein analysis structure prediction [53, 148, 150, 495, 496,
677, 790, 959]

structure comparison [107, 488]

Molecular design ligand docking [373, 612]

PCR product primer design [947]

Sequence analysis DNA sequencing [218]

multiple sequence alignment [883]

supersequence problem [151, 297]

Systems biology cell models [773]

gene regulatory network [465, 466, 671, 842, 843,
893]

Biomedicine 3D reconstruction of forensic ob-
jects

[789]

Radiotherapy [347, 348]

Drug therapy design [519, 520, 658, 894]

Tomography [99, 144, 210, 211]

now need to deal with the “large n, small m” problem (where n denotes the number
of measurements on a single sample and m is the total number of samples). Statis-
ticians obviously prefer to deal with the reverse situation, with more samples than
measurements. When multi-variate methods are required, researchers resort to ob-
taining “molecular signatures”, searching for a more coherent, reliable and robust
set of molecular changes [668]. They count on Computer Science (allied of course
with statistical methods) for the development of sophisticated algorithms to analyze
such data.

The approaches for the analysis of microarray datasets can be primary classified
as unsupervised and supervised methods. At this description level, we can under-
stand that these microarray datasets are basically two-dimensional arrays of values
(the measurements) and that a re-assignment of labels to the samples (and, analo-
gously, to the measurements) helps to uncover some structure within the data.

Clustering algorithms are the most common example of unsupervised methods
to find these structures. Another unsupervised method, which can be seen as a
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particular type of clustering algorithm is called gene ordering. In this case the over-
all objective is to find a permutation of either the rows or columns of this two-
dimensional array such that those having the same patterns of global expression are
relatively close in the permutation. An example of supervised method is feature se-
lection, in which the aim is selecting a subset of features (genes in this case) such
that a main goal is optimized, for example, classification accuracy.

We now give a brief description of some MAs that have been proposed to address
the clustering and feature selection problems in microarrays.

16.2.1 Clustering

From the description we have given before, it is clear that clustering encompasses
a wide number of different problems, as the word “scheduling” in Production Plan-
ning and Operations Research encompasses different specific problems. Merz and
Zell’s proposal [592] for the clustering problem in microarray data analysis is based
on a model in which the task is to define an assignment of objects into clusters, such
that the sum of squared distances to the centroid of the cluster is minimized. They
proposed a MA which uses the K-Means algorithm as a local search technique. They
use uniform crossover and they also propose a new one denominated replacement
recombination operator. They compare the MA with a multi-start k-means local
search using five different microarray datasets.

Speer et al. used in [840, 841] a Minimum Spanning Tree (MST) to represent the
data, where each node is a gene and each edge between nodes i and j represent the
dissimilarity between genes i and j, thus modeling the clustering problem as tree
partitioning problem, i.e., deleting a set of edges to find the clusters. They proposed
a MA based on the framework presented by Merz and Zell in [592]. They use two
fitness functions, the sum-of-squared-error criteria (the same used in [592]) and the
Davies-Bouldin-Index [186], which minimizes the intra-cluster and maximizes the
inter-cluster distances. Using four microarray datasets, they compared the MA with
two other popular clustering algorithms, the average linkage algorithm [242] and
the Best2Partition [950], which is also based on a MST-representation of the data.

Palacios et al. [698] present the results of different population based metaheuris-
tics (genetic algorithms, MAs and estimation of distribution algorithms) to obtain
biclusters from microarray datasets. According to the authors, the advantage of find-
ing biclusters in microarray datasets (instead of traditional clusters) stems from the
ability to find a group of genes that are similar in a specific subset of samples. To
analyze the performance of each algorithm, they used a yeast expression dataset
comprising 17 samples on 2,900 probes.

Gene Ordering is another unsupervised method that can be interpreted as a spe-
cial type of clustering algorithm. The objective is, given a gene expression dataset,
to rearrange the genes, such that genes with similar expression patterns stay close
to each other. MAs to tackle this problem have been proposed in [167, 576, 631].
In [167], Cotta et al. represent a solution as a binary tree, using hierarchical clus-
tering as a start point. The crossover operator is similar to the one used in [155],
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using subtrees from the parents to create an offspring. Flipping subtrees are used
as the model for the mutation operator. Two local searches are applied, the first
one works by inverting branches of subtrees and the second one employs a pair-
wise interchange local search. They test the MA in instances with up to 500 genes.
Mendes et al. [576] uses the same MA, but with the objective to evaluate the im-
pact of parallel processing in the performance of the MA and ability to apply it
in larger instances (up to 1,000 genes). More recently, in [631] these MAs are im-
proved significantly, with the inclusion of new local searches which employ Tabu
Search. The MA is tested not only in microarray instances (containing more than
6,000 genes), but as well in images, where the objective is unscramble the rows
of an image when the image has all its rows permuted at random. The images are
excellent as benchmark instances and help to evaluate gene ordering and different
clustering algorithms, making it easier to understand the quality of the results. The
MA proposed by Moscato et al. [631] has been successfully applied in different
microarray studies [63, 170, 330, 397, 577, 768].

16.2.2 Feature Selection

Feature selection methods are used primarily in bioinformatics to reduce the di-
mensionality of a dataset to help to discriminate between classes of samples under
study. We note that the definition of a feature is rather general, it can be a gene
expression (as in microarray datasets), a single nucleotide polymorphism (SNP) (as
in genome-wide association studies), protein abundances (as in ELISA kit panels),
among many others sources of biological information. Feature Selection methods
can be classified as filter or wrapper methods. In filter methods, the features selected
are evaluated based only on the characteristic of the data and in the wrapper meth-
ods, a classification algorithm is embedded in the method, giving constant feedback
regarding the quality of the set of features selected.

Zhu et al. [965] present a MA for feature selection problems with the objective to
improve classification performance. Each individual in the population is composed
of a set of selected features (X) and a set of excluded features (Y ). The local search
procedure move features between sets X and Y based on some filter ranking meth-
ods, such as ReliefF, Gain Ratio and Chi-Square. They evaluated the performance of
their approach using four UCI datasets (UC Irvine Machine Learning Repository1)
and four microarray datasets, showing improvements in the classification accuracy.

In [953], Zhu and Ong present a similar MA, but now using a Markov blan-
ket approach in the local search procedure. In [964], the same authors present a
comparison study between the MAs presented in [965] and [953]. They evaluated
the results on synthetic and real microarray datasets. Both MAs perform well in
regards to classification accuracy, but the one that uses Markov blanket approach
gives smaller feature sets. Finally, in [966], they present a memetic framework that
combines the previous approaches with a hybridization of wrapper and filter fea-
ture selections methods. The computational tests were done in fourteen microarray

1 http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/
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data sets containing 1,000 to 24,481 genes. They have also tested their methods for
hyperspectral imagery classification. The classification accuracy was good and the
number of features selected varies depending on the local search used.

Other MAs for feature selection problems were proposed in [339, 402]. However,
as stated by Zhu et al. [966], due to the inefficient local search methods a large
amount of redundant computation is incurred on evaluating the fitness of feature
subsets. This is an issue worth considering in detail when designing an MA as we
rely on the power of local search, associated with good data structures, to speed-up
the process. This is an area of great interest and we hope more sophisticated MAs
will be developed during this decade.

16.3 Phylogenetics

The aim of plylogenetics is to study the evolutionary relationship between species,
which can be represented by a phylogenetic tree. The inference of phylogenetic
trees, known as Phylogeny Problem, is a very challenging task and is certainly
important in molecular biology. It has connections with other problem domains
in bioinformatics like multiple sequence alignment, protein structure prediction,
among others [153]. The aim of the Phylogeny Problem is to find the tree (or in
certain cases the network), that best represents the evolutionary history of a set of
species. Several criteria have been defined in order to measure the quality of a certain
tree given certain input data (typically, molecular data corresponding to a collection
of different organisms or taxa); these can be broadly grouped into sequence-based
methods (such as maximum parsimony and maximum likelihood) and distance-
based methods (e.g., minimal ultrametric trees). Unfortunately, NP-hardness has
been shown for phylogenetic inference under most of these models [190, 191, 277,
942]). Due to the complexity of the problem, the research focuses in the develop-
ment of powerful metaheuristics, like MAs [153, 155, 157, 298, 767, 937].

Cotta and Moscato proposed several MAs for hierarchical clustering from dis-
tance matrices under a minimum-weight ultrametric tree model (i.e., finding an ul-
trametric tree of minimal overall weight, such that its associated distance matrix
bounds the observed distances from above). The first approaches [155] were based
on the use of evolutionary algorithms endowed with heuristic decoders, which could
be viewed as greedy hill-climbers for genotype-to-phenotype mapping. Although
these provided much better results than other simpler decoder-based approaches
and tree-based evolutionary algorithms, their computational cost was also large.
Later [157] an orthodox memetic approach was presented based on the use of a
tree representation and a local search operator based on tree rotations.

A scatter search method using path relinking was subsequently presented by
Cotta [153]. Scatter Search (SS) [314, 320, 500] is a powerful metaheuristic which
can be considered as a particular type of MA that often relies more on determinis-
tic strategies rather than randomization. In this work, the author used a ultrametric
model and a minimum weight criterion as in previous works [155, 157]. The SS
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algorithm was evaluated using five real biological data sets from an online reposi-
tory –the TreeBase site2– and was shown to compare favorably to an evolutionary
algorithm and a MA. Related to this, Gallardo et al. [298] propose an hybrid algo-
rithm that combines Branch and Bound (BnB) and MA in an interleaved way. The
idea is to have both techniques sharing information between them. They used the
same five biological data sets from as [153] and showed improved results.

Williams and Smith [937] use maximum parsimony as the optimization crite-
ria, which means that the tree with the least evolutionary events is the best. They
propose a MA, which uses diverse and elitist populations (similar with the ones
used in scatter search methods). More precisely, their approach is based on main-
taining a collection of Rec-I-DCM3 trees (Recursive-Iterative DCM3, a powerful
heuristic for designing maximum parsimony trees [777]) which cooperate within a
selectorecombinative evolutionary algorithm. They evaluate their method using bio-
logical datasets with up to 4,114 sequences, obtaining better results than parsimony
ratchet [669] and TNT (Tree Analysis using New Technology3). Richer et al. [767]
also uses maximum parsimony as the optimization criteria. They propose a MA that
uses progressive neighborhood as local search (similar with VNS - variable neigh-
borhood search [364]). They used twelve instances from TreeBase, and obtained
results that were generally equal or better than TNT.

A problem related to phylogenetic inference is that of finding consensus trees,
namely finding a tree that summarizes the information comprised in a collection
of trees (e.g., finding a unique tree that faithfully amalgamates the outcome of dif-
ferent phylogenetic inference methods). A seminal approach to this problem using
evolutionary methods can be found in [152] on the basis of the TreeRank distance
measure [916] between trees. Pirkwieser and Raidl [723] tackled this problem using
VNS, evolutionary algorithms (EAs) , MAs (using EAs endowed with local search
on different tree-based neighborhood structures), and multi-level hybrids based on
the intertwined execution of VNS and EA/MA which ultimately produced the best
results.

16.4 Protein Structure Analysis and Molecular Design

Problems involving analysis of protein structure are fundamental in bioinformatics.
We refer to Oakley et al. [677] who present a review of problems involving analysis
of protein structure (including structure prediction, structure comparison, aggrega-
tion of structures, etc.).

The protein structure prediction (PSP) problem aims to find the 3D structure with
minimum energy (based in a specific energy model) given the primary sequence of
the protein (i.e., the linear sequence of amino acids composing the protein). Krasno-
gor et al. [495] analyzed three main factors affecting the efficacy of evolutionary
algorithms for PSP: the encoding scheme, the way illegal shapes are considered
by the search, and the energy (fitness) function used. In [148] the protein structure

2 www.treebase.org
3 http://www.zmuc.dk/public/phylogeny/tnt/

www.treebase.org
http://www.zmuc.dk/public/phylogeny/tnt/
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prediction problem on the hydrophobic-polar (HP) model was considered. The HP
model [213] is based on classifying each amino acid into two classes: hydrophobic
or non-polar (H), and hydrophilic or polar (P), according to their interaction with
water molecules. In this case the binary sequence of H/P amino acids is embedded
in a cubic lattice subject to non-overlapping constraints, with the aim of maximiz-
ing the number of H-H contacts, namely the number of H-H pairs that are adjacent
in the lattice. The MA featured the inclusion of a backtracking operator in order to
repair infeasible protein configurations. A similar approach was used in [150] in the
context of the HPNX energy model, an extension of the HP model in which polar
amino acids are split into three classes: positively charged (P), negatively charged
(N), and neutral (X). Krasnogor et al. [496] presented a multimemetic algorithm for
protein structure prediction using four different models (HP in square and triangle
lattice, and functional model proteins in the square and diamond lattice). Bazzoli
and Tettamanzi [53] also considered the HP cubic lattice model. They presented a
MA using a self-adaptive strategy, where the local search is applied with a prob-
ability guided by a function similar to the one used in simulated annealing, with
the aim to either control exploitation or diversification. According with the authors,
the MA was strongly based on the MA proposed by Krasnogor and Smith [491],
where the authors compared self-adaptation against other local-search approaches
for the traveling salesman problem. Santos and Santos [790] presents a MA for the
protein structure problem using 2D triangular HP lattice model, whose main feature
was the use of caching in order to reuse computation and speed-up fitness evalua-
tion. The study of Zhao [959] addressed HP models as well. They described several
metaheuristics such as MAs, tabu search, ant colony optimization, self-organizing
map-based computing approaches and chain growth algorithm PERM, highlighting
their advantages and disadvantages.

Protein structure comparison or protein alignment is another important problem
in the area of protein structure analysis problem. In this case the goal is to iden-
tify structural similarities between proteins. Some MAs developed to deal with this
problem can be found in [107, 488, 568, 911]. Carr et al. [107] considered the
maximum contact map overlap problem. They presented a multimemetic algorithm
where a family of local searches is used: selection of the particular local search to
be applied depends on the instance, stage of the search or which individual is using
it. The MA proposed is a combination of the genetic algorithm proposed by Lan-
cia et al. [502] and six different local searches. Their computational results have
showed that the results obtained by their method are compatible with the state of
art in this problem. Also, Krasnogor [488] proposed a self-generating MA to ob-
tain structural alignment between pair of proteins using the Maximum Contact Map
Overlap (MaxCMO) problem as a model. MaxCMO is an alignment of two proteins
that maximizes the structural similarity. They tested the approach in four different
data sets, of which one was composed of randomly generated proteins and the other
three data sets with real world proteins.

A bioinformatics area closely related to protein structure analysis is that of
molecular design, which actually can be regarded as a superset of the former. In-
deed, conformational analysis, namely determining the low-energy configurations
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a molecule can adopt is a natural generalization of the protein structure prediction
problem (for example, Zacharias et al. [954] presented a MA based on a genetic
algorithm endowed with simulated annealing to determine the ground state geome-
try of molecular systems). In general, molecular design is a very hard problem, and
numerous evolutionary approaches have been proposed in the literature to deal with
problems in this area, e.g., [128, 935].

Ligand docking, i.e., the identification of putative ligands based on the geometry
of the latter and that of a receptor site, is a problem within the area of molecular
design with paramount interest for structure-based drug discovery. MA approaches
to this problem have been proposed by Hart et al. [373, 612] using an evolutionary
algorithm endowed with the Solis-Wets method for local search (see Chapter 12),
aimed to minimize the free energy potential of the docking. This MA is used in
the AutoDock4 software package. MAs have also been used for PCR (Polymerase
chain reaction) product primer design [947], taking into account constraints such as
primer length, GC content, melting temperature, etc.

16.5 Sequence Analysis

Sequence analysis is arguably one of the lowest-level tasks in bioinformatics, albeit
it remains a very important one due to its role in generating the input data for further
biological problems. Within this general subarea we can cite problems such as DNA
sequencing and the alignment of genomic/proteomic sequences.

DNA sequencing amounts to determining the correct order of nucleotides in a
certain DNA sequencing. This order must be ascertained by assembling short frag-
ments of DNA obtained from the fragmentation by chemical or mechanical means
of a larger sequence. These fragments are typically randomly distributed across
the sequence and partially overlap, thus leading to a permutational problem with
strong similarities to that of finding a minimum weight Hamiltonian path. In [218]
a spatially-structured evolutionary algorithm endowed with a so-called problem-
aware local search (PALS) procedure is presented for this purpose.

Another important problem in sequence analysis is that of aligning sequences
of nucleotides or amino acids. This problem actually bears some relationship with
sequencing, since the determination of the best overlap among DNA fragments re-
quires finding the best pairwise alignment. The applications of sequence alignment
are not limited to this case though; thus, they are very important in phylogenetic
studies to cite a relevant example. This alignment problem is easily solvable in
polynomial time for two sequences using a dynamic programming approach, but
its complexity quickly grows for when a multiple sequence alignment is sought.
Not surprisingly, evolutionary methods have been commonly applied to this prob-
lem – see [813] for a survey. Some of these evolutionary approaches can be actually
regarded as memetic. For example, the evolutionary Clustal/improver presented in
[883] incorporates a seeding mechanism (using the outcome of the Clustal5 software

4 http://autodock.scripps.edu/
5 http://www.clustal.org/

http://autodock.scripps.edu/
http://www.clustal.org/
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package) for creating a high quality initial population, and an improvement strategy
based on the removal of matched gap columns which can be regarded as a simple
form of local search.

Closely related to sequence alignment, the problem of finding the shortest com-
mon supersequence (SCS) for a collection of biological sequences stands as another
important task. A supersequence of a given sequence is a possibly longer sequence
in which all the symbols of the former can be found in the same order (although not
necessarily consecutively). Finding the SCS for a given collection of sequences is a
NP-hard problem that has been commonly dealt with in metaheuristics [70, 83, 149]
including MAs. Thus, Cotta [151] considered a MA defined on the basis of an evolu-
tionary algorithm endowed with a repairing mechanism (based on a greedy heuris-
tic) and a local search operator based on the iterative removal of symbols in the
tentative supersequence. Later, Gallardo et al. [297] presented a multi-level MA
that combined the previous algorithm with a beam search algorithm (see Chapter
12), executed in an intertwined way. This MA was shown to provide much better
results than the combined algorithm as stand-alone techniques.

16.6 Systems Biology

Systems biology [13] is a prominent interdisciplinary area of bioscientific research
focusing on the holistic study of cellular systems from the perspective of (and us-
ing tools from) complex systems and dynamical systems theory. This encompasses
the analysis and modeling of cell systems, including the study of networks of ge-
nomic/proteomic/metabolomic interactions. The latter are very amenable to the use
of network-theoretical results and graph-based algorithmic tools, among which MAs
excel. Thus, Spieth et al. consider a memetic approach to gene regulatory network
modelling using linear weight matrices [924] and S-systems [914]. They use a bi-
nary genetic algorithm to evolve the topology of the network, and an evolution strat-
egy to do local search on the parameters of the model representing the network. They
consider a so-called feedback MA in which the outcome of the local search is used
to filter gene dependencies whose strength is below a certain threshold. This can be
regarded as a Lamarckian learning procedure, as opposed to the Baldwinian learn-
ing of the simpler MA [842] without feedback. An analogous approach is followed
by Norman and Iba [671]: they consider time series data of gene expression and use
a differential evolution endowed with hill climbing to determine the structure of the
network and the kinetic parameters; an information-based criterion is used for fit-
ness evaluation. It is also worth mentioning the work of Kimura et al. [465] in which
a genetic local search method is used to solve the inference problem in the context
of S-systems. In a later work [466], they consider a cooperative approach based on
multiple subpopulations and problem decomposition and use golden section search
in order to do local improvement. Tsai and Wang [893] consider a differential evo-
lution hybridized with local search for S-system inference too.

A wider perspective on cell models is provided by [773]. They consider the use of
P-systems [738], a computing model included in the ampler paradigm of membrane
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computing [739]. These computational models are inspired by cellular processes,
and can be roughly described a system of so-called membrane structures, namely
permeable (and potentially nested) containers that comprise collections of symbols
and grammar-like rules for their evolution. By an appropriate definition of the rules
and a wise arrangement of membranes it is possible to carry out an arbitrary com-
putation. The biological inspiration of these systems make them specifically suited
for cell modelling and simulation though. Romero-Campero et al. use a two-level
genetic algorithm to evolve the structure of a P-system: the upper level is devoted to
searching in the space of rules, and the lower level performs numerical adjustment
of the kinetic parameters determining the probability of application of each rule.
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