
Chapter 14
Memetic Algorithms in the Presence of
Uncertainties

Yoel Tenne

14.1 Motivation

Memetic Algorithms have proven to be potent optimization frameworks which are
capable of handling a wide range of problems. Stemming from the long-standing
understating in the optimization community that no single algorithm can effectively
accomplish global optimization [940], memetic algorithms combine global and lo-
cal search components to balance exploration and exploitation [368, 765]: the global
search explores the function landscape while the local search refines solutions. In lit-
erature the terms memetic algorithms [615, 673] and hybrid algorithms [325] refer
to the same global–local framework just described. The merits of memetic algo-
rithms have been demonstrated in numerous publications, [374, 375, 686, 688].

However, while optimization algorithms are often conceived and tested on syn-
thetic mathematical problems, real-world applications can be significantly different.
One such major difference is that real-world problems often induce uncertainty in
the optimization problem and studies identify four common scenarios [425]:

1. a model approximates the objective function and provides the optimizer with
predicted objective values having an unknown error

2. the variables can stochastically fluctuate and it is required to find a solution
which is insensitive to these fluctuations

3. the responses from the objective function are corrupted by noise and
4. the problem (objective function, constraints) is dynamic, that is, varies with

time.

As such, baseline memetic algorithms developed using synthetic problems can per-
form poorly in such uncertain settings and this has motivated research into new
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and dedicated memetic frameworks. As such the goal of this chapter is to survey
representative studies on memetic algorithms in the four uncertainty classes. In the
remainder of the chapter we consider without loss of generality the minimization
problem

min f (x)
s.t. gi(x) � 0 , i = 1 . . .k

(14.1)

as the baseline optimization problem.
The remainder of this chapter is as follows: Section 14.2 surveys Algorithms for

optimization with uncertainty due to approximation, Section 14.3 deals with Algo-
rithms for robust optimization, Section 14.4 surveys Algorithms for noisy optimiza-
tion problems, Section 14.5 deals with dynamic optimization problems and lastly
Section 14.6 concludes the chapter.

14.2 Uncertainty Due to Approximation

Current research in engineering and science often replaces real-world laboratory ex-
periments with analysis-codes, that is, computationally-intensive simulations which
model real-world physics with high accuracy [881]. The approach allows to reduce
the cost and duration of the design process and is being widely used, for example in
aerospace [307, 725] electrical engineering [484] and chemistry [603]. Such com-
puter simulations are typically computationally expensive, that is, each simulation
call requires minutes to hours of CPU time. This makes many optimization algo-
rithms, and particularly computational intelligence ones (such as evolutionary algo-
rithms, particle swarm optimizers and so on) inapplicable since they require many
thousands of function evaluations making the optimization process prohibitively
expensive.

There are two main approaches to combat this difficulty. First, parallelization
allows to reduce the wall-clock time [192, 725]. While the approach can be effi-
cient one potential obstacle is that for commercial analysis-codes there is typically
a licence restricting the number of concurrent simulations which can be run.

A complementary approach is that of modelling. Based on the ‘plug-in’ concept
in statistics, the idea is to create a computationally cheaper mathematical approx-
imation of the expensive simulation and to use it instead during the optimization
search. The optimization algorithm then obtains the (predicted) objective values
from the model in a fraction of the time when compared to using the true (expensive)
simulation [283, 603]. Representative model types include:

• Quadratics [646]: the simplest models which capture function curvature and
have the general form

S (x) =
1
2

xTHx + xTg + c (14.2)

where coefficients are typically determined by a least-squares fit.
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• Radial Basis functions (RBFs) [85]: the model is defined as a linear combination
of kernel basis functions

S (x) =
k

∑
i=1

αiφ(‖x− xi‖) (14.3)

where αi is a scalar coefficient and xi is an interpolation point. The coefficients
are obtained from the Lagrangian interpolation condition

Φα = f (14.4)

where Φ is the interpolation matrix (Φ i, j = φ(‖xi−x j‖) ) and f is the vector of
responses ( f i = f (xi)).
• Kriging [172]: a statistically-oriented approach which models the function as a

combination of a global ‘drift’ function (typically a constant β ) and a stochastic
function Z(x) providing local adjustments so the model becomes

S (x) = β + Z(x) . (14.5)

The stochastic function is a Gaussian process with a zero mean and variance
σ . Model parameters are typically calibrated by maximum-likelihood to best
fit the data [554].
• Artificial Neural Networks (ANN) [68]: a biologically-inspired approach which

uses an array of inter-connected ‘neurons’ (processing units). The ANN is
trained using available data and learns the input-output mapping.

While models alleviate the bottleneck of high computational cost they introduce
uncertainty into the optimization problem: the optimizer now needs to operate based
on the responses of the model but those are inherently inaccurate as the model is
trained using a typically small sample (since evaluations are expensive). The extent
of inaccuracy is unknown and depends on various factors such as the dimension and
landscape complexity of the objective function and the sample size [544, 851].

Model inaccuracy implies that the optimizer is searching on a deformed land-
scape with uncertainty regarding its ‘goodness’. If the model accuracy is poor then
the optimizer may even converge to a false optimum (an optimum of the model
which is not an optimum of the true expensive function) [426]. This implies that
to be effective model-assisted frameworks must account for this uncertainty due to
approximation and several approaches have been proposed.

In [307, 439] the authors proposed the Inexact Pre-Evaluation (IPE) framework
which uses the expensive function in the first few generations (typically 2–3) and
then uses the model almost exclusively while only a portion of the elites are eval-
uated with the expensive function and are used to update the model. The approach
was later incorporated into a hierarchical distributed algorithm [803] which uses
‘layers’ of optimization, for example, at each layer an EA uses an analysis code of
different fidelity. Promising individuals would then migrate from the computation-
ally cheap low-fidelity layer to the expensive high-fidelity layer to obtain a more
accurate fitness and vice versa. The idea was later expanded such that each layer
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may use different solvers, for example an EA and a gradient-based resulting in a
memetic like framework [440]. By using the high-accuracy simulation and a gradi-
ent search the framework can diminish the effect of the low fidelity simulations.

In [426] the authors proposed the Controlled Evaluations (CE) framework which
monitors the model accuracy using cross-validation: a cache of previously evaluated
vectors is split into two disjoint sets and a model is trained using one set and tested
on the complementary set. Model accuracy is then measured by the mean squared
error (MSE)

MSE =
1
k

k

∑
i=1

(
S (x)− f (x)

)2
(14.6)

for a test set of k vectors. The authors examined both individual-based control
(at each generation evaluating a few vectors with the expensive function) and
generational-based control (every few generations evaluating all individuals with
the expensive function). A fuzzy logic rule adapted the frequency of expensive eval-
uations, that is, it increased the number of expensive evaluations when the MSE is
too large and vice versa. A related memetic approach was proposed in [305] where
for an expensive multiobjective optimization problem. The EA was used for a cer-
tain number of generations and then an ANN was trained to predict objective re-
sponses. The framework then used a gradient local search to refine solutions while
monitoring the goodness of the ANN using (14.6).

The trust-region (TR) framework is another option for managing optimization
with approximation uncertainty and has a long standing history in nonlinear pro-
gramming (and unrelated to expensive black-box optimization). The idea is to per-
form a sequence of restricted steps around the optimum instead of a one-shot global
optimization of the model. Starting from an initial guess x(0) then at each iteration
i = 0 ,1 , . . . a model is trained and the framework performs a trial step, that is, it
seeks an optimum of the model constrained to the trust-region (T ) where

T = {x : ‖x− x(i)‖p � Δ} , p = 1 or 2 , (14.7)

where Δ is the TR radius. This defines the constrained optimization problem

min S (x)
s.t. x ∈T

(14.8)

which gives a minimizer xm . Next, the framework examines the success of the trial
step with the merit value

ρ =
f (x(i))− f (xm)

S (x(i))−S (xm)
, (14.9)

where ρ > 0 indicates the trial was successful, that is, the predicted optimum indeed
improves on the current iterate (ρ = 1 indicates a perfect agreement between the
model prediction and the true function). Based on the value of ρ the framework
then updates the iterate and the TR, for example:
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• if ρ > 0 : centre the TR at xm (so x(i+1) = xm) and increase Δ .
• otherwise decrease Δ .

A merit of the TR framework is that it guarantees asymptotic convergence to an
optimum of the true (expensive) objective function [141, 771] which has motivated
using it in memetic settings.

Reference [78] seems to be among the first to propose a TR-based memetic
framework. It used a variant of the pattern search algorithm as a global search which
gradually restricted the search to zoom in on an optimum. In case no improvement
was made over the current iterate the authors proposed invoking a gradient-free local
search to refine solutions.

Later [681, 682] proposed memetic frameworks combining an EA as a global
search where at each generation every non-duplicated vector in the population was
refined using a TR local search with local RBF models. The extent of the memetic
refinement was limited to k iterations (prescribed a-priori by the user). If the local
search found an improved (true) solution after k iterations then another round was
performed but otherwise it terminated and the resultant solution replaced its original
in the population in a Lamarckian updating scheme.

In [878, 879] the authors proposed a TR memetic framework which uses quadratic
models and clustering. An EA performs global exploration and it directly evaluates
the expensive objective function. Every several generations the framework would
cluster the population using the k-means algorithm [543] to identify if the popu-
lation is converging around previously found optima. The idea is to improve the
search by identifying basins of attractions (by clustering) and invoking the local
search only from solutions considered to lie in yet unexplored basins [891]. The lo-
cal search is based on the DFO algorithm which is a gradient-free TR local search
algorithm [140, 141].

To further improve search efficiency and leverage on the power of models several
studies have proposed using models both in the global and local search phases. For
example, [963] extended the framework from [681]: an EA searches over a global
Kriging model and a number of solutions were then refined using a TR local search
with RBF models. After the local search the refined solutions replace the originals
in the population in a Lamarckian update scheme. A related study [962] proposed a
framework which uses a global Kriging model but with multiple local searches (pos-
sibly performed in parallel) where each is performed based on a different model
type. The idea is that occasionally an inaccurate model can actually yield a fast
improvement in the search [685] and so performing multiple searches and select-
ing the best solution among them can improve the search effectiveness (the study
used a quadratic model and an RBF one during the local search). Continuing the
multiple models approach, [522] has recently proposed a framework relying on en-
sembles of models as well as smoothing models. The framework uses an ensemble
of different local models where the individual predictions by each model are ag-
gregated into a single response based on the models’ accuracy. The framework also
employs a smoothing-model (low-order polynomial) to reduce the number of optima
and simplify the landscape. During the search the framework chooses between the



224 Y. Tenne

optimum predicted by the smoothing model and the ensemble. The authors have
also presented a multiobjective variant of the framework.

Another development was that of model-adaptive frameworks [876, 879, 880].
The approach is motivated by the tenet that an optimal model is problem dependant
but often there is insufficient a-priori information to select the optimal type [476,
557]. As such, a model-adaptive framework aims to autonomously select the best
model from a family of candidates. To achieve this the framework leverages on
a rigorous statistical model selection theory: it assesses the goodness of a model
based on its maximum likelihood which is a statistical measure indicating how well
a model fits the data [526, 718]. When comparing different candidate models the
one having the highest likelihood is chosen as the best predictor of the data.

Leveraging on these ideas, [876] proposed a model-adaptive memetic frame-
work which uses a DFO-like local search with Kriging models and selected at
each iteration an optimal local model type. A follow-up study [880] then extended
model-adaption to select an optimal global model as well. The proposed frame-
work used an RBF neural network as a global model and selected an optimal RBF
kernel for it out of the four candidate kernel functions based on the MSE crite-
rion (14.6). Next, an EA would search for an optimum of the model and then a
TR local search would improve the predicted optimum. The local search followed
the classical TR procedure described earlier but with the addition of monitoring
the number of points in the TR. If the trial step was unsuccessful and there were
too few points in the TR a new point would be added to improve the model. Also,
the framework selected an optimal model during the local search iterations. The
global–local process would repeat until the optimization budget was exhausted. Al-
gorithm 25 gives a pseudocode of the framework. Three variants of Ratle’s algo-
rithm [757] were used each with a different RBF model (multiquadric, linear and
inverse multiquadric) where the model type was fixed throughout the search. The
proposed framework showed statistically significant performance advantage over
the three variants indicating the merit of model adaption. Lastly, the framework and
Ratle’s algorithm were also used in an airfoil shape optimization (an 11 dimensional
problem) and again showed a statistically-significant performance advantage. Over-
all, performance analysis showed that adapting the model improves the optimization
search.

14.3 Uncertainty Due to Robustness

In many real-world applications a system needs to operate under a range of condi-
tions and not a single fixed one. For example, an engine should maintain efficiency
over a range of operating speeds or an aircraft fleet assignment should maintain
punctuality while accounting for a range of weather conditions and so on. In these
cases and similar ones elements of the problem are not crisp but can stochastically
assume any value within a known range. In such settings the optimization goal is
typically not to find the best global optimum but rather a robust solution which
yields a ‘good’ objective response and which is relatively insensitive to fluctuations.
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Algorithm 25. A Global–Local Model-Adaptive Memetic Framework [880]

generate initial sample;1

repeat2

global search phase: select model type by maximum likelihood;3

train global model;4

locate model optimum with EA;5

select starting point for local search;6

local search phase: repeat7

select model type by maximum likelihood;8

train local model;9

perform trial step;10

update TR based on step, improve model if necessary;11

until k iterations or convergence ;12

until until evaluations budget exhausted ;13

Robust optimization problems can be classified according to which elements of the
problem vary:

• objective function (for example, noise in instruments measuring the objective
values).
• variables (for example, manufacturing inaccuracies).
• operating conditions (for example, the ambient temperature in which a system

operates).

As a side note, a solution which can be adapted to yield a high-quality response is
termed flexible [837]. In contrast, a robust solution requires no adaption.

Given the stochastic nature of the variations, statistical decision theory [203, 610]
suggests three main criteria for selecting robust solutions (for simplicity we con-
sider an unconstrained minimization problem). The robust solution should provide
a bound on the worst case performance, implying (in minimization) a min-max for-
mulation, that is

minmax f (x) . (14.10)

The robust solution should minimize the expected objective value, mathematically

min F(x) (14.11)

where

F(x) =
∫ +∞

−∞
f (x + δ) p(δ ) (14.12)

and x is the baseline design vector (nominal settings), δ is a fluctuation and p(δ )
is its probability density function. In practice both the distribution p(δ ) and the
effect of fluctuations on the objective response (or uncertainty propagation [229])
are unknown and so algorithms use Monte Carlo sampling [526] to generate the
empirical unbiased estimate
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F̂(x) 1
N

N

∑
i=1

f (x + δ ) . (14.13)

The robust solution should minimize both the expected objective response and its
variance since (14.12), (14.13) can still yield a small expected value even when there
are large positive and negative responses cancelling each other. This scenario also
considers the objective variance

Var ( f (x)) =
∫ ∞

−∞
( f (x + δ)−F(x))2 p(δ ) . (14.14)

The problem formulation is then

min F(x)
min Var( f (x))

(14.15)

which is a bi-objective optimization problem. As before, when the exact information
is unavailable algorithms use the empirical unbiased estimate of the variance

V̂ar(F) =
1

k−1

k

∑
i=1

( f − F̂)2 (14.16)

In [869] the authors proposed a memetic algorithm for robust optimization of digital
filters where the uncertainty in performance is due to material imperfections. The
problem formulation involves both three parameters (which can assume a range of
values) and 12 design variables defining the filter geometry (termed control factors).
The goal of the optimization was to find a filter with a robust frequency response.
Following the Taguchi method [870], the authors used a full-factorial design for the
three parameters (defining ‘low’ and ‘high’ settings for each parameter and evalu-
ating all 8 combinations). The authors then defined a sound-to-noise ratio (SNR) as
a measure of robustness and maximized it. The optimizer was a memetic algorithm
which combined a real-coded EA and the the variable neighbourhood search algo-
rithm [604], which searches in increasingly larger local neighbourhoods around the
current iterate.

In [811] the authors considered the problem of optimizing a robust aircraft control
system using a memetic algorithms. The problem was formulated as a quadratic
minimization problem where the goal was to find a set of matrix elements which
optimize a prescribed system robustness measure. The memetic algorithm combined
an EA with a hill-climbing local search.

In a multiobjective formulation [835] proposed a memetic algorithm for robust
optimization while considering both the expected value and variance of the objective
function. The study applied the algorithm to robust optimization of airfoils where the
goal was to identify an airfoil shape yielding a low drag (aerodynamic friction) over
a range of aircraft velocities. The proposed algorithms used a variant of the NSGA-II
algorithm [196] to approximate the Pareto front and then invoked a gradient-based
local search to refine solutions. For each solution the local search minimized one
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function at a time while treating the other as a constraint, and the resulting vector
was used as a starting point for subsequent steps, repeating the procedure for the
two objective functions.

In another multiobjective study [691] used the Design-for-Six-Sigma (DFSS) ap-
proach which considers both the mean and variance of the objective and proposed
using a particle swarm optimizer (PSO) to obtain the Pareto front of the mean–
variance objectives. A follow-up study [690] then extended the idea to a memetic
algorithm combining an EA as a global search algorithm and then using a finite-
differences quasi-Newton local search to further refine the solutions, an approach
termed memetic algorithm for robust solution search. The local search was applied
to a certain percentage of the population chosen at random but without considering
the variance of the fitness, that is, a single objective refinement of the solutions. The
authors also applied an ageing operator which adjusted the expected mean fitness
based on the duration an individual has survived.

Considering multiobjective optimization and robustness [324] proposed a multi-
objective EA for robust and constrained optimization. The algorithm uses a micro-
GA (that is, having a very small population) as a form of a local search to obtain
the worst-case performance of candidate solutions. It also uses a tabu-like approach
which restricts and guides the EA and periodic re-evaluation of cached solutions to
reduce uncertainty regarding their fitness.

In [521] the authors addressed the problem of robust optimization when no a-
priori information is known about the uncertainties. Commonly, algorithms assume
some a-priori statistical distribution for the unknown uncertainties (for example
Gaussian) but this can be unfounded. The authors proposed the inverse robust evolu-
tionary design methodology which combines an EA with a constrained local search
(performed by an SQP solver). The idea is to replace the classical problem (termed
forward optimization) with inverse optimization which locates a target solution sat-
isfying some prescribed criteria:

min f (x)−T

s.t. xl � x � xu
(14.17)

where T is the target output performance. The authors proposed a single objective
variant which considers only the robustness function (the maximum uncertainty a
design variable handles before violating the worst-case performance), bi-objective
(robustness function and objective function) and tri-objective which also considers
the opportunity fitness.

In [98] the authors proposed a memetic algorithm for robust airline scheduling
where the goal was to obtain a fleet assignment which accounts for flight re-timing
and aircraft rerouting. Using a multiobjective approach the study considered two ob-
jectives: schedule reliability and schedule flexibility. The proposed algorithm used
a tailored representation (the adjacency representation often used in traveling sales-
man problems) and multi-memes (multiple local searchs) to improve effectiveness.
The algorithm used three variants of local search, each considering the schedule
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reliability, schedule flexibility or both. The study also used a host of additional fea-
tures such as archiving and biased sampling (to encourage exploration).

Also in scheduling problems, [837] proposed a memetic algorithm for the stochas-
tic capacitated vehicle routing problem (CVRP). The baseline CVRP is that of de-
termining the sequence in which a fleet of vehicles visits spatially distributed cus-
tomers such that some cost measure (time, distance) is minimized. In the stochastic
CVRP the customer demands and travel costs are no longer crisp which motivates
a robust approach. The proposed algorithm samples the objective function around a
set of solutions and selects (based on the problem formulation) either the expected
(mean) response or the worst-case (max). The algorithm refines solutions using a
local search combined with tabu search.

Following the worst case performance approach to robust optimization [684]
proposed a memetic algorithm designed for expensive objective functions. The al-
gorithm builds upon the earlier genetic algorithm with robust solution searching
schemes (GARSS) [895] in which a random perturbation was added to a chromo-
some before evaluation. In its single evaluation variant each chromosome was per-
turbed once while in the multiple evaluations variant it was perturbed repeatedly
and the final fitness was taken either as the mean or worst of the perturbed set.
Empirical tests show that the multiple evaluations variant was more reliable than
the single evaluation one but obviously required more function evaluations which
makes the algorithm inapplicable to expensive problems. As such, the authors pro-
posed an algorithm which combines a max-min optimization strategy with a TR
model-assisted approach and a Baldwinian updating scheme. The algorithm starts
with an initial sample (random or by design of experiments) and uses the baseline
GARSS algorithm with the worst fitness of the perturbed set taken as the chromo-
some fitness. The GARSS is run for several generations while evaluating the true
(expensive) function and all vectors and associated fitness are cached. Next, each
individual in the population is refined with a TR local search where the goal of the
latter is to find the worst case performance. To reduce function evaluations the local
search used RBF models which were trained using cached vectors adjacent to the
TR centre and the TR procedure follows that described in 14.2. The goal of the lo-
cal search was to find the worst case performance for each population member by
solving the max-min problem

min f (x + xc)
s.t. x ∈Ω (14.18)

where x is the vector of perturbations, xc is the baseline candidate and Ω is the fea-
sible range of perturbations. The search was performed using an SQP solver and
the TR iterations terminated after a prescribed k expensive function evaluations. If
the TR local-search found a lower objective value then it replaced the fitness of
the original population members (that is, before the local search was invoked) in
a Baldwinian learning scheme (the chromosome was not changed). Algorithm 26
gives a pseudocode of the framework (adapted from [684]). Performance analysis
was based on a robust airfoil shape optimization problem with a parametrization
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Algorithm 26. Trust-region Enabled Max-Min Surrogate-Assisted EA [684]

initialize database;1

repeat2

for each individual i in population do3

if status is database building then4

evaluate individual with true (expensive) function and cache;5

endif6

else improve individual with TR–SQP search7

initialize TR;8

repeat9

train local RBF model using neighbours from database;10

establish domain where uncertain variables vary Ω ;11

find point of worst-fitness in TR using RBF models (trial step);12

evaluate predicted point with expensive function and cache it;13

update TR based on success of trial step;14

until TR termination condition met ;15

set individual’s fitness to worst-case value;16

17

endfor18

Apply standard EA operators to create a new population;19

until EA termination condition met ;20

resulting in a 24-dimensional problem. The authors first obtained an airfoil shape
without considering any perturbation (a classical non-robust optimization) as a ref-
erence shape. Next, they applied the framework to robust optimization in the pres-
ence of manufacturing errors (±5% error bounds on design variables). Analysis
showed the performance of the robust airfoil is indeed more stable than that of the
non-robust one. The authors also optimized the airfoil for perturbations in operating
conditions (cruise velocity). Similarly to the previous case, the robust airfoil perfor-
mance was more stable over the entire range of cruise speeds while the performance
of the non-robust airfoil degrades quickly outside the nominal operating point. Over-
all, the framework was able to generate robust designs on a limited computational
budget.

14.4 Uncertainty Due to Noise

In many real-world applications repeatedly evaluating the same vector returns
slightly different objective values, a scenario termed noisy optimization. Such fluc-
tuations in the response imply uncertainty regarding the true function value. Noisy
functions are encountered in two main scenarios:

1. The response is obtained by measuring some real-world process and noise is
either inherent in the process or in the measurement instruments. For example,
reading electrical signals from an electric motor [104].
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2. The objective function depends on some random process. For example, when
optimizing the topology of neural networks the same vectors (candidate topolo-
gies) can produce different responses due to random initialization of network
weights [949].

The dominant (and sometimes implicit) assumptions in noisy optimization problems
are that the noise is random (so it cannot be filtered out a-priori) and that its ampli-
tude is much smaller than the underlying objective response (so it only moderately
deforms the landscape). Many studies also assume that the noise is Gaussian.

Since the observed responses are corrupted by noise some additional sampling
mechanism needs to be introduced to estimate the true objective value. These mech-
anisms come in two main flavours:

1. Explicit Averaging: a better estimate of the true response can be obtained by
using multiple samples. In temporal sampling the same vector is re-sampled n
times and under the assumption of random Gaussian noise this allows to im-
prove (reduce) the estimated response variance by

√
n [808]. A complementary

approach is that of spatial sampling where the samples are taken from neigh-
bouring points around the current individual [788].

2. Implicit Averaging: simply increasing the population size provides more sam-
ples of the objective function and implicitly combats noise. The population size
can be either fixed (set a-priori to a high value) or adapted during the search.

With the first category (noise due to external processes), in [104] the authors tack-
led the problem of optimizing the control system of an electric motor. They used
online optimization, that is, where each candidate control settings were tested in
real-time and the resulting performance was fed back into the algorithm. The mea-
surements of the motor were inherently noisy and to combat noise the study pro-
posed a memetic algorithm which monitored the population diversity to control the
degree of mutation: high diversity invoked more local searches while low diversity
invoked a higher mutation rate. Also, the algorithm selected between two types of
local search (Hooke-Jeeves pattern search [391] and Nelder-Mead simplex [653]) to
refine vectors.

Also in this category, [462] proposed a memetic algorithm combining a real-
coded EA with the Bacteria Foraging local search. The latter is inspired by the
swim pattern of the E. coli bacteria in the presence of favourable/hostile environ-
ment (rich/poor with nutrients). The idea is to perform tentative moves (similar to
the bacteria’s swim pattern) and adapt the step size based on the success/failure
of these moves. The authors applied the memetic algorithm to optimization of a
Proportional/Integral/Derivative (PID) controller for an automatic voltage controller
subject to a sine wave noise.

In [601] the authors proposed a memetic algorithm based on differential evolu-
tion where the scale factor was adjusted with a local search. The algorithm also
employed a noise analysis component to determine whether to replace a parent with
an offspring. Specifically, it compared the samples of fitness (for each) to determine
whether the means were sufficiently distinct (so a comparison is meaningful). If so,
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the better solution was retained but otherwise the algorithm sampled more points
and repeated the comparison.

In [43] the authors considered the noisy pattern recognition problem of inexact
graph matching, that is, determining whether two images match when one is cor-
rupted by noise. They proposed a memetic algorithm in a combinatorial framework
where each graph is represented by a chromosome of its vertices. The GA uses tour-
nament selection and a new position based cross-over but no mutation. A tailored
local search explored the neighbourhood of a solution and if it succeeded in locat-
ing a better individual then the latter replaced the original in a Lamarckian update
scheme. The operators were designed to be insensitive to vertex location to provide
better immunity to noise.

Also in this class, [695] studied the problem of matching an input image to one
from an available data set. The difficulty being that the input image may be par-
tially obscured, deformed and so on which results in a noisy optimization prob-
lem. They used a specialized encoding to represent both the input image and the
database images by segmenting them into lines and connecting angles. They pro-
posed a memetic algorithm which combined a real-coded EA (one point cross-over,
uniform mutation) and a hill-climbing local search. For each database image the al-
gorithm matched each segment to the those of the input image while ignoring small
differences (to combat minor image deformations).

Related to the second category of noise due to a random process, [171] proposed
an EA which uses a self-organizing map (SOM) [477] as a local search operator. The
algorithm was designed to solve the vehicle routing problem (VRP) with emphasis
on noisy data. The SOM was used to allow immunity to noise and to fluctuations
in customer demands. The authors have also proposed several dedicated operators
which work in conjunction with the SOM to improve the search.

In [656, 660] the authors tackled the problem of training a neural network used
for controlling resource discovery in peer-to-peer (P2P) networks. They considered
a multi-layer perceptron (MLP) network with a topology of 22 input neurons and
10 hidden-layer neurons plus a bias channel resulting in 298 weights to optimize.
Since the network needs to operate under a variety of query conditions this results in
a noisy objective function. The authors proposed the adaptive global–local memetic
algorithm (AGLMA) which combined a real-coded EA with self-adaptation and two
local searches: the stochastic simulated-annealing (SA) [468] and the deterministic
Hooke-Jeeves. To combat noise the algorithm adjusted the objective response by
explicit averaging. The proposed algorithm used a measure of population diversity

ψ = 1− F̂avg− F̂best

F̂worst− F̂best
(14.19)

where the measures are the average, best and worst fitness values in the population at
the end of a generation. It follows that ψ  1 indicates high diversity and ψ  0 low
diversity. The algorithm used this diversity measure to determine when to invoke
each local search by the heuristic rules
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ψ

⎧⎨
⎩
∈ [0.1,0.5] invoke simmulated annealing

< 0.2 invoke Hooke-Jeeves
(14.20)

The idea is to use an explorative search (the SA) when the population diversity is
decreasing (low ψ values). The Hooke-Jeeves local search was applied to the best
individual and does not have the same explorative qualities but is more localized.
It follows that for ψ ∈ [0.1,0.2] both local searchs are applied. The algorithm also
leveraged on implicit resampling by adjusting the population size based on the di-
versity measure using the rule

Spop = S f
pop + Sv

pop · (1−ψ) (14.21)

where S f
pop , Sv

pop are a prescribed lower and upper bounds on the population size,
respectively. Algorithm 27 gives a pseudo-code of the framework. As mentioned,
the authors applied the algorithm to the topology optimization of a P2P network
and benchmarked it against the Checkers Algorithm (CA), the Adaptive Check-
ers Algorithm (ACA) and a baseline real-coded GA while the optimization budget
was 1.5e6 function evaluations. The proposed algorithm (AGLMA) performed best,
closely followed by ACA and lastly the CA and baseline GA. Although the AGLMA
converged more slowly than the CA it obtained a better final solution. The paper ex-
plains that the ACA can be viewed as an AGLMA without the memetic (that is, local
search) component which explains its slightly degraded performance and highlights
the merit of the memetic approach. Further, the AGLMA and ACA also effectively
filtered noise which was evident from the convergence analysis (given in the paper)
when compared to the CA and baseline GA. Overall, the AGLMA framework was
able to handle this high-dimensional and noisy optimization problem.

14.5 Uncertainty Due to Time-Dependency

In the three categories covered so far (expensive evaluations, robustness, noise) the
underlying optimization problem was fixed. However, in many real-world applica-
tions the problem is time-dependant so (14.1) becomes

min f (x, t)
s.t. gi(x, t) � 0 , i = 1 . . .k

t = 1 ,2 , . . .

(14.22)

that is, the objective landscape, constraints and hence the problem optima may vary
with time. Such problems arise in diverse applications such as scheduling [525] and
control [755].
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Algorithm 27. Adaptive Global–Local Memetic Algorithm [660]

sample weights W and self-adaptive parameters h;1

evaluate fitness of initial population with explicit averaging;2

calculate merit value: ψ ← 1− F̂avg−F̂best

F̂worst−F̂best
;3

while budget conditions and ψ > 0.01 do4

for all individuals i do5

for all variables j do6

update weights and self-adaptive parameters;7

endfor8

endfor9

evaluate fitness of population by explicit averaging;10

sort population (parents+offspring) based on fitness;11

if 0.1 � ψ � 0.5 then12

execute simmulated annealing on 2nd best individual;13

if ψ < 0.2 then14

execute Hooke-Jeeves on best individual;15

endif16

if simmulated annealing successful then17

execute Hooke-Jeeves on individual improved by SA;18

endif19

endif20

calculate Spop← S f
pop +Sv

pop · (1−ψ);21

select Spop best individuals as the next generation;22

calculate merit value: ψ ← 1− F̂avg−F̂best

F̂worst−F̂best
23

endw24

The time-dependant nature of such problems introduces several specific algorith-
mic considerations:

1. Since the optimization algorithm effectively needs to solve not one but a series
of problems it should not drive the population of candidate solutions to fast con-
vergence but should rather maintain diversity to allow the population to adapt
to the changing landscapes.

2. Between subsequent time steps changes to the problem formulation are often
small so it may be beneficial to search in the vicinity of the recent optimum
(optimum tracking).

Due to their unique nature dynamic problems are often tested with a tailored suite
of problems termed the Moving Peaks [82, 613, 906] which define a time-varying
multimodal landscape where peaks deform and translate. There are also specific
performance measures for dynamic problems where the commonly used one being
the mean offline performance

foff =
1
T

T

∑
t=1

f ∗(t) (14.23)

where f ∗(t) is the best objective value found at time step t [927].
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In [904, 905, 906] the authors proposed a memetic algorithm combining a bi-
nary EA with the variable local search (VLS) operator to track optima in dynamic
problems. The EA invoked the operator when the averaged best performance of the
population dropped below a prescribed threshold. Once a change in the landscape
was detected the VLS operator enabled a local search around individuals from the
pre-change population, an approach motivated by the assumption that changes are
gradual (as mentioned above). The extent of the search was variable and calibrated
based on the observed degree of change. When the VLS operator was invoked the
evolutionary operators of recombination and mutation were temporarily suspended
and the EA generated new vectors by adding or subtracting (with equal probabil-
ity) from the population a random binary vector (whose range of values was limited
to define a small search neighbourhood). After a single application of the VLS the
EA reverted back to standard recombination and mutation and observed the per-
formance of the population elites over a period of several generations. If the mean
performance did not reach its previous (pre-change) value then the range of the VLS
operator was increased and the process was repeated.

In [915] the authors proposed a memetic algorithm based on a particle swarm
optimizer (PSO) and a hill-climbing local search. The algorithm combined several
techniques to improve its performance in dynamic problems:

1. when updating a particle’s position the algorithm considered the best solution
found by the particle and its neighbours (termed local-PSO) to avoid rapid con-
vergence

2. particles were refined by a local search which stochastically perturbed an elite
vector to perform a neighbourhood search

3. particles were positioned on a virtual ‘ring’ and communicate only with their
ring-wise neighbours (irrespective of the Euclidean distance in the search space)
as an additional measure to avoid rapid convergence and lastly

4. to increase diversity the worst solutions were extracted and allowed to evolve in
a sub-swarm independently from the main swarm.

In [635] the authors proposed a memetic algorithm which combined the Extremal
Optimization algorithm (EO) [77] and a deterministic local search. The former (EO)
starts from a baseline solution and perturbs it to generate a population and then
probabilistically eliminates the worse member. As such, it aims not for fast con-
vergence but for gradual adaption, which has motivated the authors to apply it to
dynamic problems. In a follow-up study [633] the authors proposed another variant
which at each generation refined one population member with a local search using
the Hooke-Jeeves algorithm. Another follow-up study [634] evaluated both the EO
with the Hooke-Jeeves variant and with an improved local search which scanned
along each coordinate with an initial step and adjusted the step size depending on
the search progress.

In [232] the authors tackled dynamic and highly constrained problems and pro-
posed a memetic algorithm based on the scatter search framework [321] which com-
bines a global search (diversification) and a local search (intensification). The global
search generated solutions similarly to an evolutionary recombination operator and
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where an offspring could replace only a parent. Solutions were also generated in a
Nelder-Mead simplex-like move which explored along promising directions. Next,
solutions were chosen for refinement based on competitive ranking (considering
both their fitness and diversity) and were refined with one of several local opti-
mizers (the authors considered variants of SQP and hill-climbing). The algorithm
handled constraints by a static penalty method.

Recently [482] proposed a memetic algorithm for dynamic multiobjective prob-
lems. The idea is to accelerate the convergence of a multiobjective EA (or similar
algorithms) by predicting the change in the Pareto set based on the observed pattern
in past time steps under the assumption that the Pareto set does not change errat-
ically but follows an identifiable pattern. The approach used a predictive gradient
(g) which approximated the shift in the population between consecutive time-steps.
The idea was then to shift individuals in the population using the rule

xnew = x + μg . (14.24)

The predictive gradient was calculated based on changes in the centroid of the non-
dominated solutions. The algorithm monitored landscape changes by comparing the
fitness of a subset of individuals and so a mismatch between consecutive time-steps
indicated a landscape change. This then triggered a population update where a pre-
determined number of individuals were randomly selected and updated with the
predictive gradient. The approach was implemented within a multiobjective evolu-
tionary gradient search algorithm.

In [913] the authors proposed a memetic algorithm for dynamic optimization
which used a binary representation where at each generation the elite was refined
by a local search and added several tailored enhancements. First, it used two hill-
climbing variants for the local search:

1. greedy crossover hill climbing (GCHC): used the current elite and another par-
ent (chosen by roulette wheel selection) and generated an offspring by uniform
crossover and

2. steepest mutation hill climbing (SMHC): the elite individual was mutated by
randomly flipping its bits.

In both variants the offspring replaced the elite if it was better. Another feature was
that the algorithm adapted the probability of applying each variant based on their
success in previous steps (starting from an equal probability of 0.5 for both). The
success of a step was measured by

η =
| fimp− fini|

fini
(14.25)

where fimp , fini were the improved and initial objective values, respectively, and the
probability of applying each variant was updated by

p(t + 1) = p(t)+Δ ·η(t) (14.26)
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where Δ was prescribed by the user. Lastly, the algorithm safeguarded the popula-
tion diversity using two procedures:

1. adaptive dual mapping (ADM): before starting a local search the method evalu-
ated the bit-complementary of the initial solution and used the better of the two
as the resultant initial vector and

2. triggered random immigrants (TRI): when the population diversity was deemed
low a portion of the population was replaced by randomly generated individuals
while the population diversity was measured by

ξ = ∑s
i=1 d(x�, xi)

s
(14.27)

where s is the population size and d(x�, xi) is the Euclidean distance between
the current elite and the ith individual in the population.

Algorithm 28 gives a pseudo-code of the framework. The authors evaluated the pro-
posed framework using tests derived from stationary problems (the 100-bit binary
coded variants of the OneMax, Plateau, RoyalRoad and Deceptive). The authors
used memetic variants with the GCHC, SMHC, AHC operators described above, a

Algorithm 28. Memetic Algorithm for Dynamic Problems [913]

initialize population and evaluate individuals;1

calculate algorithm parameters;2

select elite for local search;3

if ADM is used then4

create a dual of the elite and evaluate;5

if dual is better set as new elite;6

endif7

perform AHC with elite;8

repeat9

apply standard EA operators(selection,recombination,mutation) to create offspring;10

evaluate offspring and select individuals for next generation;11

select elite for local search;12

calculate algorithm parameters;13

if ADM is used then14

create a dual of the elite and evaluate;15

if dual is better set as new elite;16

endif17

perform AHC with elite;18

if TRI is used then19

if ξ < θ0 then20

replace a prescribed number of worst individuals in new generation with21

random immigrants;
endif22

endif23

until stop condition is met ;24
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baseline GA, a baseline GA with population restart when a change is detected, a GA
with random immigrants, a GA with elitism-based immigrants and the population-
based incremental algorithm (PBIL). Performance analysis indicated that:

1. the diversity-based procedures improved performance in dynamic problems
2. the ADM approach performed better when there were significant changes in the

environment while the TRI performs better in correnspondence to small changes
3. the optimal local search was problem dependant and there was no clear winner

and lastly
4. the AHC approach used multiple local searches which provided more

robustness.

Overall, results indicated that the combination of the AHC as a local search with
ADM and TRI provided an effective memetic framework for dynamic problems.

14.6 Conclusion

Optimization problems arising in real-world applications can differ significantly
from synthetic mathematical test problems and one such major difference is un-
certainty induced by approximation, robustness, noise or time-dependency. While
computational intelligence algorithms have been applied to such problems, memetic
algorithms offer enhanced capabilities which significantly improve search efficacy
under such challenging settings, as surveyed in this chapter. The complexity of real-
world problems can be expected to grow, for example, to problems with multiple
uncertainties (expensive and robust or noisy and dynamic). In such settings memetic
algorithms will likely further establish their standing as a potent framework for op-
timization in the presence of uncertainties.
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