
Chapter 10
Diversity Management in Memetic Algorithms

Ferrante Neri

10.1 Introduction

In Evolutionary Computing, Swarm Intelligence, and more generally, population-
based algorithms diversity plays a crucial role in the success of the optimization.
Diversity is a property of a group of individuals which indicates how much these
individuals are alike. Clearly, a group composed of individuals similar to each other
is said to have a low diversity whilst a group of individuals dissimilar to each other is
said to have a high diversity. In computer science, in the context of population-based
algorithms the concept of diversity is more specific: the diversity of a population is
a measure of the number of different solutions present, see [239].

Ideally, a population-based algorithm is supposed to work in high diversity con-
ditions during the early stages of the optimization, then progressively lose diversity
in proximity to the global basin of attraction, and eventually lose all diversity when
the global optimum is detected. The latter condition means that the entire popula-
tion is characterized by a unique genotype, i.e. the global optimum. The described
functioning happens very rarely in practice since the algorithm tends either to pre-
maturely converge to a suboptimal solution or to stagnate. Premature convergence is
an undesired condition, which very often jeopardizes the functioning of Evolution-
ary Algorithms (EAs), consisting of a diversity loss in the presence of a sub-optimal
(and unsatisfactory) candidate solution, see [246]. Stagnation is typical of Swarm
Intelligence Algorithms (SIAs) but is present also in some EA structures. An al-
gorithm stagnates when it does not succeed at enhancing upon its individual with
the best performance while the diversity is still high. In other words, the algorithm
repeatedly explores less promising areas of the decision space and thus does not
manage to register improvements.

Due to their different structures, EAs and SIAs require different and complemen-
tary techniques for handling diversity. More specifically, in EAs a mechanism which
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preserves diversity and thus inhibits premature convergence is beneficial, while such
an approach in SIAs can be detrimental and turn into stagnation behavior.

In Memetic Algorithms (MAs), since their earliest definition in [621] and early
original works in Memetic Computing (MC), see [615] and [622], the problem of di-
versity is taken into account and implicitly analyzed. Since MAs perform the search
by employing multiple search logics, diversity is preserved by studying the decision
space under complementary perspectives, see [489]. This means that if the search
logic within the evolutionary framework fails at detecting new promising solutions,
the local search components give an extra chance to the algorithm to detect fresh
and promising genotypes. This is probably one of the main reasons contributing to
the success of MAs.

However, as remarked in [239], MAs by themselves are not a “magic solution”
to optimization problems, and the employment of multiple search logics does not
guarantee the prevention of premature convergence or stagnation. For example, a
MA based on an evolutionary framework and employing local search components
can naturally lose diversity since the application of the local search to a set of points
belonging to the same (sub-optimal) basin attraction would produce the convergence
of a part of the population to the corresponding local optimum.

In order to prevent MAs from premature convergence and stagnation, several
approaches attempting to handle population diversity in MAs have been proposed
during recent years. This chapter deals with diversity in MAs and presents a survey
of techniques recently proposed in literature for handling diversity and coordinating
the various algorithmic components contained within MAs. Section 10.2 gives a
short survey on the topic. Section 10.3 focuses on Fitness Diversity adaptation and,
presents various diversity metrics and the related adaptation techniques.

10.2 Handling the Diversity of Memetic Algorithms: A Short
Survey

Most of the MAs proposed in the literature employ an evolutionary framework (and
not a swarm intelligence framework). Thus, most of the work on diversity attempts
to preserve diversity and prevent premature convergence.

A classical and straightforward approach has been proposed in [246] where a
generational Genetic Algorithm (GA) employing truncation selection is proposed.
The algorithm randomly pairs parents; but only those string pairs which differ from
each other by some number of bits (i.e., a mating threshold) are allowed to repro-
duce. In this way, diversity is preserved by inhibiting the presence of duplicates. A
similar approach has been proposed with reference to an engineering problem in
[863] and [205].

In [640] the problem of diversity is handled by employing a structured popula-
tion. A distributed GA and a local search algorithm process the entire population.
The sub-population evolves independently and thus preserves the diversity of the
entire population.
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In [648] a local search crossover is integrated within the evolutionary framework.
The basic idea of this local search crossover is to remove and replace genes in a
selected parent solution on the basis of its common and different edges with the
other parent solution. As a result, the offspring is genotypically different from the
parents and diversity is preserved.

In [581] a specific crossover for preserving the diversity is proposed. This
crossover keeps constant the Hamming distance (i.e. the number of genes in a can-
didate solution at which the corresponding symbols are different) between parents
and offspring. Moreover, in [581] a restarting mechanism is proposed. This simple
(and sometimes efficient) mechanism consists of resampling the individuals of the
population in the presence of diversity loss and possible premature convergence.

In [491] a MA composed by a GA and an adaptive local search algorithm is
proposed. This adaptive local search is inspired by Simulated Annealing, see [468]
and [122], and is supposed to improve upon the available genotypes when the pop-
ulation is diverse and to increase the diversity when the population is approaching
the convergence condition. The diversity preservation logic proposed in [491] can
be summarized in the following way: a solution which is slightly worse than the
starting one can be accepted under the condition that it increases the diversity in the
population. More formally, for a given minimization problem and for a given candi-
date solution x, a newly generated solution x′ replaces x according to the following
probability:

P =

⎧⎨
⎩

1 if f (x′) � f (x)

e
k| f(x′)− f (x)|
| fmin− favg| otherwise

(10.1)

where fmin and favg are, respectively, minimum and average fitness values among
the population individuals and k is a normalization constant. This technique mea-
sures the diversity by means of the fitness value and is strongly related to the fitness
diversity adaptation which will be extensively discussed in Section 10.3.

In [492] the encoding of memetic information (in the mentioned paper muta-
tions for some problems and local search algorithms for another problem) is per-
formed within the solutions. A probabilistic criterion manages the transmission of
the memes and thus search strategies from parents to offspring. In [492], multiple
local search algorithms are employed, de facto composing a multimeme algorithm,
see [496] and [489]. The resulting algorithmic structure is supposed to prevent pre-
mature convergence by offering multiple search perspectives of the decision space.
The main algorithmic philosophy is that the combination and coordination of a set
of various search logics enhances the chance of obtaining a high performance or,
more modestly, at least overcome the bottlenecks resulting from the specific limi-
tations of a certain search structure. For example the employment of a local search
algorithm employing a steepest descent pivot rule can be efficient in the proximity
of the global optimum when it is important to finalize the search by exploiting the
neighborhood while a random walk algorithm can support the evolutionary frame-
work to detect new promising directions when the search still has not detected a
promising direction. If a MA employs both these local searches, it might be able
to handle both the situations. In addition, the adaptation is supposed to allow the
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algorithm to decide itself the most proper local search on the basis of the situation.
The employment and thus coordination of multiple local search algorithms within
a MA is a crucially important topic in Memetic Computing and is somehow the
“hearth” and the reason for success/unsuccess of a MA. Some examples of stud-
ies on this specific topic are reported in [411], [493], [683], [830] and references
therein.

In [806] a MA for clustering is proposed. Two modified selection schemes based
on fitness assignment concur at global and local levels to preserve diversity and to
prevent premature convergence. In [715], a MA for solving multimodal problems is
presented. The concept of fitness sharing is extended to the local search algorithms,
thus defining Baldwinian sharing. In practice, the algorithm employs a sharing tech-
nique (i.e. a normalization of the fitness values based on the Euclidean distances to
affect the sorting/selection and thus prefer a population composed by spread out
points) in order to guarantee that diversity is preserved.

In [536] a real-coded MA is proposed. Within this MA two mechanisms for pre-
serving the diversity are employed. The first mechanism, namely negative assor-
tative mating, consists of selecting genotypically distant parents in order to obtain
an offspring which does not look similar to either generating parent. The second
mechanism, namely Breeder Genetic Algorithm (BGA) mutation [639], is a muta-
tion operator which promotes the generation of distant genes within the solutions by
employing an ad-hoc probability distribution function.

In [873] the problem of diversity is handled by using multiple search logics and
a structured population. Two adaptive systems for preserving diversity are also pre-
sented. Both mechanisms rely on the fact that the frequency of the local search helps
to preserve diversity. According to the first adaptive system, at the beginning of
the optimization process the sub-populations already contain enough diversity and
therefore do not need additional search moves coming from the local search; hence
the local search algorithms are activated with a low frequency. Subsequently, since
the population naturally tends to progressively lose diversity, the local search is ac-
tivated with a higher frequency. More specifically, the frequency γ of local search
activation is given by the following heuristic rule:

γ =
1√

2πσ
exp

(
−1

2

(
gen− μ

σ

)2
)
η (10.2)

where μ and σ are mean value and standard deviation of a Gaussian distribution,
gen is the generation number, and η is a scaling factor.

The second adaptation system is more complex and less intuitive compared to the
first one. In order to explain this mechanism, let us consider a (sub-)population S of
individuals. The population can be partitioned into Q groups S1,S2, . . . ,SQ where
each group contains individuals characterized by the same fitness value. With refer-
ence to the generic j− th group, we can define the ratio p j as:

p j =

∣∣S j
∣∣

Q
∑

i=1
|Si|

(10.3)
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where with |∗| is indicated the cardinality of the set, i.e. how many individuals be-
long to a given group. On the basis of the described partitioning, Shannon’s infor-
mation entropy, see [775], is defined as:

E =−
Q

∑
j=1

p j log(p j). (10.4)

For a given population the entropy can be considered as a fitness-based diversity
measure. In [873] the entropy variation is used to determine the amount of local
search to be employed. More specifically the diversity frequency at the generation
gen is given by:

β (gen) = 1 +
E (gen)−E (gen− k)

E (gen− k)
(10.5)

where E (gen) and E (gen− k) (where gen � k) are the population entropy measure
at the gen− th and (gen− k)− th generation, respectively.

10.3 Fitness Diversity Adaptation

Fitness Diversity Adaptive MAs are a class of algorithms which, like other works
e.g. [491] and [873], measure fitness diversity in order to estimate the population di-
versity. This choice is done considering that for multi-variate problems the measure
of genotypical distance can be excessively time and memory consuming and thus
the adaptation might require an unacceptable computational overhead. Obviously,
fitness diversity could not give an efficient estimation of population diversity, since
it can happen that very different points take the same fitness values, e.g. if the points
lay in a plateau. However, this fact does not effect the decision mechanism of the
adaptive system for the following reasons.

The MAs employing Fitness Diversity Adaptation (FDA) are composed of an
evolutionary framework and a list of local searchers. The coordination of the local
search is carried out by the fitness diversity. More specifically, when the diversity is
low one or more explorative local searchers, e.g. Nelder-Mead Simplex [653], are
activated in order to offer an alternative search logic, and possibly to detect new
promising search directions and increase the diversity. If this mechanism fails and
the algorithm keeps losing diversity and converging to some areas of the decision
space an exploitative local search algorithm, e.g. Rosenbrock Algorithm [776], at-
tempts to quickly perform the exploitation of the most promising basin of attraction
and thus quickly complete the search. If the fitness diversity is low, the candidate so-
lutions in the population have a similar performance. This fact can mean either that
the solutions are concentrated within a small region of the decision space, or that
the solutions are distributed over one or more plateaus or over two or more basins of
attraction having a similar performance. It can easily be visualized that all the listed
situations are undesirable and that the activation of an alternative search move can
increase the chances to detect “fresh” genotypes. In other words, although the FDA
does not guarantee a proper estimation of the population diversity, it is an efficient
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index to estimate the correct moment of the evolution which would benefit from a
local search application.

Although the fitness diversity mechanism sounds reliable at first, it hides two
practical issues when the algorithmic design is performed. The first issue is how to
measure the diversity while the second is how to use the diversity information for
coordinating the local and global search. The following subsections address these
two problems.

10.3.1 Fitness Diversity Metrics

Before analyzing the various metrics presented in the literature for measuring di-
versity a comment on the approach is necessary. As highlighted in [657], there is
no “best” metric in general but there is a “most suitable” metric dependent not only
on the problem (i.e. the fitness landscape) but also on the nature of the evolutionary
framework. For example, an efficient diversity metric for Evolution Strategy (ES)
would likely be inadequate to measure the diversity of Differential Evolution (DE).
This consideration can be seen as a consequence of the No Free Lunch Theorem
[940].

The first fitness diversity metric has been introduced in [104] and then used in
[659]. This metric is given by:

ξ = min

{∣∣∣∣
fbest − favg

fbest

∣∣∣∣ ,1
}

, (10.6)

where fbest and favg are respectively best and average fitness values over the indi-
viduals of the population. Measurement ξ can be seen as the answer to the question
“How close is the average fitness to the best one?”. Thus, if the average fitness value
is as good as the best, the diversity is low and ξ ≈ 0. On the contrary, if the fit-
ness values are very distant the diversity metric is saturated to 1 and the diversity
can be considered to be high. In this way, the metric ξ can say whether the local
search activation is suitable (ξ ≈ 0) or unnecessary (ξ = 1). This metric proved to
lead to a high algorithmic performance in some cases but suffers from robustness,
as shown in [657]. The main drawback of this metric is that it is dependent on the
codomain width: adding a constant value to the fitness function would lead to an
important variation of the diversity values. However, this diversity metric is very
efficient in the specific cases it has been used: for multivariate and complex fitness
landscapes having a limited range of variability in the fitness values (e.g. [0,10]) and
the minimum around zero (e.g. for error minimization in engineering problems).

The second fitness diversity metric has been introduced in [888] and used also in
[889]. The metric is:

ν = min

{
1,

σ f∣∣ favg
∣∣
}

, (10.7)

where
∣∣ favg

∣∣ and σ f are respectively the average value and standard deviation over
the fitness values of individuals of the population. Also the parameter ν can vary
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between 0 and 1 and can be seen as a measurement of the fitness diversity and
distribution of the fitness values within the population. In other words, ν is the
answer to the question “How sparse are the fitness values within the population?”.
As well as ξ , ν is codomain dependent and works with a limited range of variability.
Unlike ξ , ν depends on the standard deviation and thus on the fitness distribution
over all individuals of the population. In addition, ν is less sensitive than ξ to fitness
diversity variations and would not consider high diversity a situation where one
individual has a performance significantly better than the others. For this feature if
ξ is efficient on an ES framework employing the plus strategy, ν can be employed
for SIAs and DE i.e. for those algorithms which normally work in high diversity
conditions, see [889].

The third fitness diversity metric has been introduced in [658] for a specific med-
ical application. This metric consists of the following:

ψ = 1−
∣∣∣∣

favg− fbest

fworst − fbest

∣∣∣∣ (10.8)

where fbest , favg and fworst are respectively best, average and worst fitness over the
individuals of the population. The parameter ψ can be seen as the answer to the
question “If we sort all fitness values over a line, which position is occupied by
the average fitness?”. The metric ψ also varies between 0 and 1. It can be noticed
that, unlike the two metrics previously presented, ψ is not codomain dependant, i.e.
its value does not depend on the range of variability of the fitness values. Due to
its structure, this metric is very sensitive to small variations and thus is especially
suitable for fitness landscapes containing plateaus and low gradient areas. Parameter
ψ has been successfully employed within memetic frameworks which employ plus
strategy in the spirit of the ES.

In [106] the following parameter is used:

χ =

∣∣ fbest − favg
∣∣

max
∣∣ fbest − favg

∣∣
k

(10.9)

where fbest and favg are the fitness values of, respectively, the best and average in-
dividuals of the population. max

∣∣ fbest − favg
∣∣
k is the maximum difference observed

(e.g. at the kth generation), beginning from the start of the optimization process. It is
clear that χ varies between 0 and 1; it scores 1 when the difference between the best
and average fitness is the largest observed, and scores 0 when fbest = favg i.e. the
entire population is characterized by a unique fitness value. Thus, χ is the answer to
the question “How much better is the best individual than the average fitness of the
population with respect to the history of the optimization process?”.

Besides considering it as a measurement of the fitness diversity, χ is an esti-
mation of the best individual performance with respect to the other individuals. In
other words, χ measures how much the super-fit outperforms the remaining part of
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the population. More specifically, the condition χ ≈ 1 means that one individual
has a performance far above the average, thus one super-fit individual is leading the
search. Conversely, the condition χ ≈ 0 means that performance of the individuals
is comparable and there is not a super-fit. Due to its nature, χ is suitable for guess-
ing the state of convergence in a population of a SIA or a DE. In [106], χ has been
defined for coordinating the search components of a MA based on a DE framework.
This choice was carried out by taking into account the fact that a DE structure works
well when one individual is better than the others since it has the role of guiding the
search. However, its performance should not be excessively good with respect to the
others; otherwise, it would be unlikely for another individual to succeed at outper-
forming the leading individual. As a general guideline, a DE population containing
a super-fit individual needs to exploit the direction offered by the super-fit in order
to eventually generate a new individual that outperforms the super-fit. Conversely, a
DE population made up of individuals with comparable fitness values requires that
one individual that clearly outperforms the others be generated in order to have a
good search lead. A similar analysis can be carried out for Particle Swarm Opti-
mization (PSO) and other SIAs.

In [887] another fitness diversity metric has been introduced. This metric is given
by:

φ =
σ f

| fworst − fbest | (10.10)

where σ f is the standard deviation of fitness values over individuals of the popula-
tions, and fworst and fbest are the worst and best fitness values, respectively, of the
population individuals.

Analogous to the other fitness diversity indexes listed above, φ varies between 0
and 1. When the fitness diversity is high, φ ≈ 1; on the contrary when the fitness
diversity is low, φ ≈ 0. The index φ can be seen as a combination of ν in formula
(10.7) and ψ in formula (10.8) because it represents the distribution of fitness val-
ues over individuals of the population with respect to its range of variability. In other
words, φ is the answer to the question ”How sparse are the fitness values with re-
spect to the range of fitness variability at the current generation?”. The index ψ was
also designed for DE based algorithms. Employment of the standard deviation in the
numerator in formula (10.10) is due to the fact that a DE framework tends to gen-
erate an individual with performance significantly above the average (as mentioned
for the metric χ) and efficiently continues optimization for several generations. In
this sense, an estimation of the fitness diversity of a DE population by means of the
difference between best and average fitness values can return a misleading result
and each value must be taken into account. Regarding the denominator in formula
(10.10), a normalization to the range of variability of the current population makes
the index co-domain invariant (unlike ν in formula (10.7) ) and its estimation is not
affected, for example by adding an offset to the fitness function. Thus, the index
φ can be successfully employed, within a DE framework, on problems of various
kinds.
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Finally, another fitness diversity index inspired also by the entropy study in [873]
has been proposed in [481]. The population is sorted according to the fitness values.
Thus an interval [ fmin, fmax]] having width d can be detected. Let us indicate with
n1 the number of individuals falling within

[
fmin, fmin + d

3

]
and with n3 the num-

ber of individuals falling within
[

fmax− d
3 , fmax

]
. Indicating with Np the number of

individuals of the population and assuming that we want to solve a minimization
problem, the diversity is then estimated as:

τ3 = 0.5 +
n1−n3

2Np
. (10.11)

In other words, this metric subdivides the population into three quality classes and
measures the diversity as a difference of the cardinality of the classes. Metric τ3 has
been used for an ES framework but it might be suitable also for different frame-
works. It has successfully been applied to a chemical engineering problem charac-
terized by a highly multi-variate function but likely not a very multi-modal fitness
landscape. It must be remarked that although τ3 also varies between 0 and 1, the in-
terpretation of the parameter is different from the other diversity metrics. The max-
imum diversity condition occurs when τ3 = 0.5, which corresponds to maximum
distribution of the performance over the individuals of the population. The condi-
tions τ3 ≈ 0 and τ3 ≈ 1 mean that a few individuals have a very high performance
with respect to the others and that a few individuals have a very low performance
with respect to the others, respectively. In order to visualize this approach, it may
be useful to imagine a ring where value 0 and 1 are contiguous. In this sense, this
metric measures the balance among the three performance regions. This sophisti-
cated way to measure diversity has the drawback that the metric can suffer from
abrupt changes in proximity to 0 and 1 and very slow changes in proximity to 0.5,
in correspondence of the same variations within the population. This can make the
adaptation rather complicated to handle.

In order to summarize the features of the diversity metrics listed in this section,
a synoptical scheme is shown in Table 10.1.

Table 10.1. Diversity Metrics: Synoptical Scheme

Diversity Metric Framework Landscape Features Drawbacks

ξ EAs Highly Multi-modal Lanscape Non scalable

ν SIAs, DE Flexible Non scalable

ψ EAs Plateaus, Flat Landscapes Very sensitive

χ SIAs, DE Flexible Very DE and PSO tailored

φ SIAs, DE Flexible Very sensitive

τ3 EAs Large Scale not too Multi-modal Abrupt and Slow Variations
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10.3.2 Coordination of the Search: The “Natura non Facit
Saltus” Principle

At each generation, when a diversity metric is calculated the problem that follows is
how to use such information in order to perform the coordination of global and local
search. As mentioned before, let us consider that the MA employs an evolutionary
framework and two local search algorithms, the first having explorative features,
the second having exploitative features. The goal is to activate the explorative local
search algorithm when the population has lost part of its diversity and to activate the
exploitative local search algorithm when the population has lost most of its diver-
sity and is approaching a convergence condition. In order to obtain this effect three
adaptive schemes have been proposed in the literature.

The first scheme, used in [104], [659], and [658], employs a threshold mechanism
for the application of local search. More specifically, when the control parameter
surpasses a given threshold, the corresponding local search algorithm is activated.
This mechanism can be seen as a probabilistic scheme where the probability of the
local search activation, dependent upon the control parameter, is a step function
which takes the value 1 within the threshold limits and 0 elsewhere. Although this
kind of scheme has proven to be efficient for various applications (see e.g. [657]),
the continuous variation of the fitness diversity in an evolutionary algorithm is not
in accordance with this step function. In other words, if the fitness diversity metrics
measure the necessity of the algorithm increasing/decreasing the local search within
the memetic framework, the intensity of the local search is supposed to be related to
the variation of the diversity metrics. On the contrary, a step function suggests that
the local search is abruptly introduced within the search at its maximum intensity
and can thus be too crude an approximation of the exploration/exploitation necessity
of the MA.

In order to introduce smooth variation in the intensity of the local search applica-
tion, two more schemes have been proposed in [106] and [889], respectively. More
specifically, the step function has been replaced with a continuous function within
the memetic frameworks under examination. Thus, the probability of local search
activation is given by a function of the fitness diversity.

Indicating with λ the fitness diversity metric, the first function is the beta distri-
bution function, see [106]:

p(λ ) =
1

B(s, t)
· (λ −a)(s−1) (b−λ )(t−1)

(b−a)(s+t−1) (10.12)

where a and b are, respectively, the inferior and superior limits of the distribution;
B(s, t) is the beta function; s = 2 and t = 2 are the shape parameters. Parameters
a and b must be set on the basis of the algorithm under consideration. The latter
parameters play the same role as the thresholds in the previous scheme.
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The second, used in [889], is the exponential distribution:

p(λ ) = e
−(λ−μp)

2σ2
p (10.13)

where μp and σp are the parameters characterizing the intensity application range
of the local search.

In order to better explain the three coordination scheme, let us consider the Fast
Adaptive Memetic Algorithm (FAMA) proposed in [104]. This algorithm is based
on an ES framework and two local search algorithms. The first local search, play-
ing an explorative role, is the Nelder-Mead Algorithm (NMA) [653] and the sec-
ond playing an exploitative role, is the Hooke-Jeeves Algorithm (HJA) [391]. For a
proper functioning of FAMA, we desire that the NMA be activated when the diver-
sity becomes low in order to give an alternative search logic, and that the HJA be
activated in very low diversity condition. Since FAMA employs the ξ metric, this
statement can be rephrased as: the NMA is activated when 0.05 < ξ < 0.5 and the
HJA when ξ < 0.2. By keeping the same amount of local search, if the beta distri-
bution function is employed then a = 0 and b = 0.68 for the NMA and, a = 0 and
b = 0.3 for the HJA. Fig. 10.1 gives a graphical representation of the local search
coordination, dependent on the diversity metrics, for the FAMA. The diagram shows
the step functions (as in the original implementations) in the upper part, the related
beta distribution functions in the central part, and the related exponential distribu-
tions in the lowest part.
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Fig. 10.1. Coordination of the local search for the FAMA

It should be remarked that the scaling of beta and exponential functions is done
taking into account the fact that the areas below each trend are the same i.e. the over-
all balance between global and local search is the same for the original and proposed
versions of each algorithm. For the sake of clarity, activation of a local searcher is
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performed by sampling (by means of a uniform distribution) a pseudo-random num-
ber ε in [0,1] and then comparing it with p(λ ); if ε < p(λ ) the corresponding local
search is performed.

Numerical results reported in [890] show that the employment of continuous
functions is beneficial and succeeds at improving upon the step scheme for a con-
stant amount of local and global search. This fact has been expressed as the “natura
non facit saltus” principle. The Latin expression “natura non facit saltus”, i.e. na-
ture does not make (sudden) jumps, is a principle of classical physics, claimed since
Aristoteles’ time until the formulation of the quantum mechanic theory, which states
that variation of physical phenomena is continuous, thus not containing “jumps”.
This concept has been extended to Memetic Computing and more specifically to the
local search coordination, dependent on a fitness diversity index. The local search
activation should not be abruptly started on the basis of some conditions but should
slowly be increased and decreased around a suitable diversity condition.

10.4 Conclusion

This chapter analyzes the problem of diversity in Memetic Computing. The problem
of diversity loss is very relevant in Evolutionary Computation since a premature di-
versity loss can lead to a premature algorithmic convergence into undesired areas of
the decision space. Dually, some algorithms could fail at generating new genotypes
despite a high diversity and thus stagnate. In Memetic Computing this problem is
even more important because the local search application might cause the conver-
gence to the same (or a very similar) point starting from a set of solutions belonging
to the same basin of attraction. However, since Memetic Algorithms employ differ-
ent search logics, if a proper coordination of the algorithmic components is carried
out, a successful optimizer can be designed. Modern Memetic Algorithms use dif-
ferent local search algorithms for preserving a proper diversity which promotes the
enhancements in the search, and they propose adaptive techniques for coordinating
the various algorithmic components.

Several schemes for handling diversity have been illustrated. The employment
of structured population has been widely used since it implicitly allows a preser-
vation of diversity. However, distributed algorithms by themselves are not enough
to prevent stagnation and premature convergence. Therefore, an adaptive system
can support the memetic framework. A control mechanism based on Shannon’s en-
tropy can be an efficient countermeasure. Fitness diversity adaptation also provides
an efficient diversity control system since a diversity metric is used to coordinate
the local search. Although this approach is promising it hides two problems: how
to measure the diversity and how to use this information within a memetic frame-
work. In accordance with the No Free Lunch Theorem, there is no optimal diversity
metric, but rather its design should take into account the problem and the evolution-
ary/swarm intelligence structure under consideration. A synoptical table compares
the metrics and gives some hints on how to use some diversity metrics proposed in
the literature. Regarding the coordination of the algorithmic components, it has been
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observed that an efficient Memetic Algorithm should contain both explorative and
exploitative local search algorithms. The explorative local search algorithm(s) assist
the framework to detect novel promising search directions when the diversity is de-
creasing, while the exploitative one(s) perform an extensive search within already
detected basins of attraction when the population has lost most of its diversity. To
pursue this aim three control functions are illustrated in this chapter. The first func-
tion is a step function, i.e. local search is activated simply by means of threshold
comparison. Although this approach is efficient, it has a wide margin of improve-
ment if instead of a step function a continuous function is preferred. Two proba-
bility distribution functions have been considered. Previous studies observed that,
while keeping constant the amount of local and global search, a Memetic Algorithm
employing continuous functions outperforms on a regular basis the corresponding
algorithm employing the step function. This fact was previously named the “natura
non facit saltus” principle for Memetic Algorithms.
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