
Chapter 2
Evolutionary Algorithms

Ágoston E. Eiben and James E. Smith

2.1 Motivation and Brief History

Developing automated problem solvers (that is, algorithms) is one of the central
themes of mathematics and computer science. Similarly to engineering, where look-
ing at Nature’s solutions has always been a source of inspiration, copying ‘natural
problem solvers’ is a stream within these disciplines. When looking for the most
powerful problem solver of the universe, two candidates are rather straightforward:

• the human brain, and
• the evolutionary process that created the human brain.

Trying to design problem solvers based on these answers leads to the fields of neu-
rocomputing and evolutionary computing respectively. The fundamental metaphor
of evolutionary computing (EC) relates natural evolution to problem solving in a
trial-and-error (a.k.a. generate-and-test) fashion.

In natural evolution, a given environment is filled with a population of individuals
that strive for survival and reproduction. Their fitness – determined by the environ-
ment – tells how well they succeed in achieving these goals, i.e., it represents their
chances to live and multiply. In the context of a stochastic generate-and-test style
problem solving process we have a collection of candidate solutions. Their quality
– determined by the given problem – determines the chance that they will be kept
and used as seeds for constructing further candidate solutions.

Surprisingly enough, this idea of applying Darwinian principles to automated
problem solving dates back to the forties, long before the breakthrough of comput-
ers [270]. As early as in 1948 Turing proposed “genetical or evolutionary search”

Ágoston E. Eiben
Free University, Amsterdam, The Netherlands
e-mail: gusz@cs.vu.nl

James E. Smith
UWE, Bristol, UK
e-mail: James.Smith@uwe.ac.uk

F. Neri et al. (Eds.): Handbook of Memetic Algorithms, SCI 379, pp. 9–27.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

gusz@cs.vu.nl
James.Smith@uwe.ac.uk


10 Á.E. Eiben and J.E. Smith

Table 2.1. The basic evolutionary computing metaphor linking natural evolution to problem
solving

EVOLUTION PROBLEM SOLVING

environment ←→ problem

individual ←→ candidate solution

fitness ←→ quality

and already in 1962 Bremermann actually executed computer experiments on “op-
timization through evolution and recombination”. During the sixties three different
implementations of the basic idea have been developed at three different places. In
the USA Fogel introduced evolutionary programming, [269, 271], while Holland
called his method a genetic algorithm [325, 389, 645]. In Germany Rechenberg and
Schwefel invented evolution strategies [761, 801]. For about 15 years these areas de-
veloped separately; it is since the early nineties that they are envisioned as different
representatives (“dialects”) of one technology that was termed evolutionary com-
puting [32, 36, 37, 235, 596]. It was also in the early nineties that a fourth stream
following the general ideas has emerged: Koza’s genetic programming [41, 483].
The contemporary terminology denotes the whole field by evolutionary comput-
ing, or evolutionary algorithms, and considers evolutionary programming, evolution
strategies, genetic algorithms, and genetic programming as sub-areas.

2.2 What Is an Evolutionary Algorithm?

As the history of the field suggests, there are many different variants of evolution-
ary algorithms. The common underlying idea behind all these techniques is the
same: given a population of individuals within some environment that has limited
resources, competition for those resources causes natural selection (survival of the
fittest). This in turn causes a rise in the fitness of the population. Given a quality
function to be maximised, we can randomly create a set of candidate solutions, i.e.,
elements of the function’s domain, commonly called individuals. We then apply the
quality function to these as an abstract fitness measure – the higher the better. On
the basis of these fitness values some of the better individuals are chosen to seed the
next generation. This is done by applying recombination and/or mutation to them.
Recombination is an operator that is applied to two or more selected individuals (the
so-called parents) producing one or more new candidates (the children). Mutation
is applied to one individual and results in one new individual. Therefore executing
the operations of recombination and mutation on the parents leads to the creation of
a set of new individuals (the offspring). These have their fitness evaluated and then
compete – based on their fitness (and possibly age)– with the old ones for a place in
the next generation. This process can be iterated until an individuals with sufficient
quality (a solution) is found or a previously set computational limit is reached.



2 Evolutionary Algorithms 11

There are two fundamental forces that form the basis of evolutionary systems:

• Variation operators (recombination and mutation) create the necessary diversity
within the population, and thereby facilitate novelty.
• Selection acts as a force increasing the mean quality of solutions in the popula-

tion. As opposed to variation operators, selection reduces diversity.

The combined application of variation and selection generally leads to improving
fitness values in consecutive populations. It is easy (although somewhat misleading)
to view this process as if evolution is optimising (or at least “approximising”) the
fitness function, by approaching the optimal values closer and closer over time. An
alternative view is that evolution may be seen as a process of adaptation. From
this perspective, the fitness is not seen as an objective function to be optimised,
but as an expression of environmental requirements. Matching these requirements
more closely implies an increased viability, which is reflected in a higher number
of offspring. The evolutionary process results in a population which is increasingly
better adapted to the environment.

It should be noted that many components of such an evolutionary process are
stochastic. Thus, although during selection fitter individuals have a higher chance
of being selected than less fit ones, typically even the weak individuals have a chance
of becoming a parent or of surviving. During the recombination process, the choice
of which pieces from the parents will be recombined is made at random. Similarly
for mutation, the choice of which pieces will be changed within a candidate solution,
and of the new pieces to replace them, is made randomly. The general scheme of an
evolutionary algorithm is given in Fig. 1 in a pseudocode fashion.

Algorithm 1. The general scheme of an evolutionary algorithm in pseudocode

INITIALISE population with random individuals;1

EVALUATE each individual;2

repeat3

SELECT parents;4

RECOMBINE pairs of parents;5

MUTATE the resulting offspring;6

EVALUATE new individuals;7

SELECT individuals for the next generation;8

until TERMINATION CONDITION is satisfied ;9

It is easy to see that this scheme falls into the category of generate-and-test algo-
rithms. The evaluation (fitness) function represents a heuristic estimation of solution
quality, and the search process is driven by the variation and selection operators.
Evolutionary algorithms possess a number of features that can help to position them
within the family of generate-and-test methods:

• EAs are population based, i.e., they process a whole collection of candidate
solutions simultaneously.



12 Á.E. Eiben and J.E. Smith

• EAs mostly use recombination, mixing information from two or more candidate
solutions to create a new one.
• EAs are stochastic.

The various dialects of evolutionary computing that we have mentioned previously
all follow these general outlines, differing only in technical details as shown in the
overview table (2.2) later on in this chapter. In particular, the representation of a
candidate solution is often used to characterise different streams. Typically the rep-
resentation (i.e., the data structure encoding an individual) has the form of; strings
over a finite alphabet in genetic algorithms (GAs), real-valued vectors in evolution
strategies (ESs), finite state machines in classical evolutionary programming (EP),
and trees in genetic programming (GP). The origin of these differences is mainly
historical. Technically, one representation might be preferable to others if it matches
the given problem better; that is, it makes the encoding of candidate solutions easier
or more natural. For instance, when solving a satisfiability problem with n logical
variables, the straightforward choice is to use bit-strings of length n, hence the ap-
propriate EA would be a genetic algorithm. To evolve a computer program that can
play checkers, trees are well-suited (namely, the parse trees of the syntactic expres-
sions forming the programs), thus a GP approach is likely. It is important to note
that the recombination and mutation operators working on candidates must match
the given representation. Thus, for instance, in GP the recombination operator works
on trees, while in GAs it operates on strings. In contrast to variation operators, the
selection process only takes fitness information into account, and so it works in-
dependently from the choice of representation. Therefore differences between the
selection mechanisms commonly applied in each stream are a matter of tradition
rather than of technical necessity.

2.3 Components of Evolutionary Algorithms

In this section we discuss evolutionary algorithms in detail. There are a number of
components, procedures, or operators that must be specified in order to define a
particular EA. The most important components, indicated by italics in Fig. 1, are:

• Representation (definition of individuals)
• Evaluation function (or fitness function)
• Population
• Parent selection mechanism
• Variation operators, recombination and mutation
• Survivor selection mechanism (replacement)

To create a complete, run-able, algorithm, it is necessary to specify each of these
components and to define the initialisation procedure and a termination condition.



2 Evolutionary Algorithms 13

2.3.1 Representation (Definition of Individuals)

The first step in defining an EA is to link the “real world” to the “EA world”, that
is, to set up a bridge between the original problem context and the problem-solving
space where evolution takes place. Objects forming possible solutions within the
original problem context are referred to as phenotypes, while their encoding, that
is, the individuals within the EA, are called genotypes. This first design step is
commonly called representation, as it amounts to specifying a mapping from the
phenotypes onto a set of genotypes that are said to represent them. For instance,
given an optimisation problem where the possible solutions are integers, the given
set of integers would form the set of phenotypes. In this case one could decide to
represent them by their binary code, so for example the value 18 would be seen as
a phenotype, and 10010 as a genotype representing it. It is important to understand
that the phenotype space can be very different from the genotype space, and that the
whole evolutionary search takes place in the genotype space. A solution – a good
phenotype – is obtained by decoding the best genotype after termination. Therefore
it is desirable that the (optimal) solution to the problem at hand – a phenotype – is
represented in the given genotype space.

Within the Evolutionary Computation literature many synonyms can be found for
naming the elements of these two spaces.

• On the side of the original problem context the terms candidate solution, phe-
notype, and individual are all used to denote points in the space of possible
solutions. This space itself is commonly called the phenotype space.
• On the side of the EA, the terms genotype, chromosome, and again individual

are used to denote points in the space where the evolutionary search actually
takes place. This space is often termed the genotype space.
• There are also many synonymous terms for the elements of individuals. A place-

holder is commonly called a variable, a locus (plural: loci), a position, or – in a
biology-oriented terminology – a gene. An object in such a place can be called
a value or an allele.

It should be noted that the word “representation” is used in two slightly different
ways. Sometimes it stands for the mapping from the phenotype to the genotype
space. In this sense it is synonymous with encoding, e.g., one could mention binary
representation or binary encoding of candidate solutions. The inverse mapping from
genotypes to phenotypes is usually called decoding, and it is necessary that the
representation should be invertible so that for each genotype there is at most one
corresponding phenotype. The word representation can also be used in a slightly
different sense, where the emphasis is not on the mapping itself, but on the “data
structure” of the genotype space. This interpretation is the one we use when, for
example, we speak about mutation operators for binary representation.



14 Á.E. Eiben and J.E. Smith

2.3.2 Evaluation Function (Fitness Function)

The role of the evaluation function is to represent the requirements the population
should adapt to. It forms the basis for selection, and so it facilitates improvements.
More accurately, it defines what “improvement” means. From the problem-solving
perspective, it represents the task to be solved in the evolutionary context. Tech-
nically, it is a function or procedure that assigns a quality measure to genotypes.
Typically, this function is composed from a quality measure in the phenotype space
and the inverse representation. To stick with the example above, if the task is to find
an integer x that maximises x2, the fitness of the genotype 10010 could be defined
as the square of its corresponding phenotype: 182 = 324.

The evaluation function is commonly called the fitness function in EC. This
might cause a counterintuitive terminology if the original problem requires min-
imisation, because the term fitness is usually associated with maximisation. Mathe-
matically, however, it is trivial to change minimisation into maximisation, and vice
versa.

Quite often, the original problem to be solved by an EA is an optimisation prob-
lem. In this case the name objective function is often used in the original problem
context, and the evaluation (fitness) function can be identical to, or a simple trans-
formation of, the given objective function.

2.3.3 Population

The role of the population is to hold (the representation of) possible solutions. A
population is a multiset1 of genotypes. The population forms the unit of evolution.
Individuals are static objects that do not change or adapt; it is the population that
does. Given a representation, defining a population may be as simple as specifying
how many individuals are in it, that is, setting the population size. Alternatively, in
some sophisticated EAs a population has an additional spatial structure, defined via
a distance measure or a neighbourhood relation. This may be thought of as akin to
the way that “real” populations evolve within the context of a spatial structure dic-
tated by the individuals’ geographical position on earth. In such cases the additional
structure must also be defined in order to fully specify a population. In contrast to
variation operators, that act on one or more parent individuals, the selection opera-
tors (parent selection and survivor selection) work at the population level. In general,
they take the whole current population into account, and choices are always made
relative to what is currently present. For instance, the best individual of a given pop-
ulation is chosen to seed the next generation, or the worst individual of the given
population is chosen to be replaced by a new one. In almost all EA applications the
population size is constant and does not change during the evolutionary search.

The diversity of a population is a measure of the number of different solutions
present. No single measure for diversity exists. Typically people might refer to
the number of different fitness values present, the number of different phenotypes

1 A multiset is a set where multiple copies of an element are possible.



2 Evolutionary Algorithms 15

present, or the number of different genotypes. Other statistical measures such as en-
tropy are also used. Note that the presence of only one fitness value in a population
does not necessarily imply that only one phenotype is present, since many pheno-
types may have the same fitness. Equally, the presence of only one phenotype does
not necessarily imply only one genotype. The converse is, however, not true: if only
one genotype is present then this implies only one phenotype and fitness value are.

2.3.4 Parent Selection Mechanism

The role of parent selection or mating selection is to distinguish among individuals
based on their quality, and in particular, to allow the better individuals to become
parents of the next generation. An individual is a parent if it has been selected to
undergo variation in order to create offspring. Together with the survivor selection
mechanism, parent selection is responsible for pushing quality improvements. In
EC, parent selection is typically probabilistic. Thus, high-quality individuals have
more chance of becoming parents than those with low quality. Nevertheless, low-
quality individuals are often given a small, but positive chance; otherwise the whole
search could become too greedy and get stuck in a local optimum.

2.3.5 Variation Operators

The role of variation operators is to create new individuals from old ones. In the
corresponding phenotype space this amounts to generating new candidate solutions.
From the generate-and-test search perspective, variation operators perform the “gen-
erate” step. In principle, there is no restriction on how such variation operators work.
The variation operators in the traditional EA dialects are usually divided into two
types based on their arity, distinguishing unary and n-ary (n > 1) operators. Such a
division can also be made for the newest members of the EA family, such as differ-
ential evolution [733] or particle swarm optimisation methods [457].

2.3.5.1 Mutation

A unary variation operator is commonly called mutation. It is applied to one geno-
type and delivers a (slightly) modified mutant, the child or offspring. A mutation
operator is always stochastic: its output – the child – depends on the outcomes of
a series of random choices. It should be noted that an arbitrary unary operator is
not necessarily seen as mutation. For example, it might be tempting to use the term
mutation to describe a problem-specific heuristic operator which acts on one in-
dividual2. However, in general mutation is supposed to cause a random, unbiased
change. For this reason it might be more appropriate not to call heuristic unary
operators mutation. The role of mutation has historically been different in vari-
ous EC dialects. Thus, in genetic programming for instance, it is often not used
at all, whereas in genetic algorithms it has traditionally been seen as a background

2 Such operators are used frequently in memetic algorithms.



16 Á.E. Eiben and J.E. Smith

operator, used to fill the gene pool with “fresh blood”, and in evolutionary program-
ming it is the sole variation operator responsible for the whole search work.

It is worth noting that variation operators form the evolutionary implementation
of elementary steps within the search space. Generating a child amounts to step-
ping to a new point in this space. From this perspective, mutation has a theoretical
role as well: it can guarantee that the space is connected. There are theorems which
state that an EA will (given sufficient time) discover the global optimum of a given
problem. These often rely on this “connectedness” property that each genotype rep-
resenting a possible solution can be reached by the variation operators [236]. The
simplest way to satisfy this condition is to allow the mutation operator to “jump”
everywhere: for example, by allowing that any allele can be mutated into any other
with a nonzero probability. However, it should also be noted that many researchers
feel these proofs have limited practical importance, and many implementations of
EAs do not in fact possess this property.

2.3.5.2 Recombination

A binary variation operator is called recombination or crossover. As the names
indicate, such an operator merges information from two parent genotypes into one
or two offspring genotypes. Like mutation, recombination is a stochastic operator:
the choices of what parts of each parent are combined, and how this is done, depend
on random drawings. Again, the role of recombination differs between EC dialects:
in genetic programming it is often the only variation operator, and in genetic algo-
rithms it is seen as the main search operator, whereas in evolutionary programming
it is never used. Recombination operators with a higher arity (using more than two
parents) are mathematically possible and easy to implement, but have no biologi-
cal equivalent. Perhaps this is why they are not commonly used, although several
studies indicate that they have positive effects on the evolution [234].

The principle behind recombination is simple – by mating two individuals with
different but desirable features, we can produce an offspring that combines both of
those features. This principle has a strong supporting case – for millennia it has
been successfully applied by plant and livestock breeders to produce species that
give higher yields or have other desirable features. Evolutionary algorithms create
a number of offspring by random recombination, and we hope that while some will
have undesirable combinations of traits, and most may be no better or worse than
their parents, some will have improved characteristics. The biology of the planet
Earth, where with a very few exceptions lower organisms reproduce asexually, and
higher organisms always reproduce sexually [569, 570], suggests that recombina-
tion is the superior form of reproduction. However recombination operators in EAs
are usually applied probabilistically, that is, with a non-zero chance of not being
performed.

It is important to remember that variation operators are representation dependent.
Thus for different representations different variation operators have to be defined.
For example, if genotypes are bit-strings, then inverting a 0 to a 1 (1 to a 0) can be



2 Evolutionary Algorithms 17

used as a mutation operator. However, if we represent possible solutions by tree-like
structures another mutation operator is required.

2.3.6 Survivor Selection Mechanism (Replacement)

The role of survivor selection or environmental selection is to distinguish among
individuals based on their quality. In that, it is similar to parent selection, but it is
used in a different stage of the evolutionary cycle. The survivor selection mechanism
is called after the creation of the offspring from the selected parents. As mentioned
in Sect. 2.3.3, in EC the population size is almost always constant, which means
that a choice has to be made about which individuals will be allowed in to the next
generation. This decision is often based on their fitness values, favouring those with
higher quality, although the concept of age is also frequently used. In contrast to par-
ent selection, which is typically stochastic, survivor selection is often deterministic.
Thus, for example, two common methods are the fitness-based method of ranking
the unified multiset of parents and offspring and selecting the top segment, or the
age-biased approach of selecting only from the offspring.

Survivor selection is also often called replacement or the replacement strategy.
In many cases the two terms can be used interchangeably, and so the choice of
which to use is often arbitrary. A good reason to use the name survivor selection is
to keep terminology consistent: steps 1 and 5 in Fig. 1 are both named selection,
distinguished by an adjective. A preference for using replacement can be motivated
if there is a large difference between the number of individuals in the population and
the number of newly-created children. In particular, if the number of children is very
small with respect to the population size, e.g., 2 children and a population of 100. In
this case, the survivor selection step is as simple as choosing the two old individuals
that are to be deleted to make places for the new ones. In other words, it is more
efficient to declare that everybody survives unless deleted and to choose whom to
replace. If the proportion is not skewed like this, e.g., 500 children made from a
population of 100, then this is not an option, so using the term survivor selection is
appropriate.

2.3.7 Initialisation

Initialisation is kept simple in most EA applications, the first population is seeded
by randomly generated individuals. In principle, problem-specific heuristics can be
used in this step, to create an initial population with higher fitness. Whether this is
worth the extra computational effort, or not, very much depends on the application
at hand. There are, however, some general observations concerning this issue based
on the so-called anytime behaviour of EAs. These are discussed in Sect. 2.4.



18 Á.E. Eiben and J.E. Smith

2.3.8 Termination Condition

We can distinguish two cases of a suitable termination condition. If the problem
has a known optimal fitness level, probably coming from a known optimum of the
given objective function, then in an ideal world our stopping condition would be the
discovery of a solution with this fitness , albeit perhaps only within a given precision
ε > 0. However, EAs are stochastic and mostly there are no guarantees of reaching
such an optimum, so this condition might never get satisfied, and the algorithm may
never stop. Therefore we must extend this condition with one that certainly stops
the algorithm. The following options are commonly used for this purpose:

1. The maximally allowed CPU time elapses.
2. The total number of fitness evaluations reaches a given limit.
3. The fitness improvement remains under a threshold value for a given period of

time (i.e., for a number of generations or fitness evaluations).
4. The population diversity drops under a given threshold.

Technically, the actual termination criterion in such cases is a disjunction: optimum
value hit or condition x satisfied. If the problem does not have a known optimum,
then we need no disjunction. We simply need a condition from the above list, or a
similar one that is guaranteed to stop the algorithm.

2.4 The Operation of an Evolutionary Algorithm

Evolutionary algorithms have some rather general properties concerning how they
work. To illustrate how an EA typically works, we will assume a one-dimensional
objective function to be maximised. Fig. 2.1 shows three stages of the evolutionary
search, showing how the individuals might typically be distributed in the beginning,
somewhere halfway, and at the end of the evolution. In the first phase, directly af-
ter initialisation, the individuals are randomly spread over the whole search space
(Fig. 2.1, left). After only a few generations this distribution changes: because of
selection and variation operators the population abandons low-fitness regions and
starts to “climb” the hills (Fig. 2.1, middle). Yet later (close to the end of the search,
if the termination condition is set appropriately), the whole population is concen-
trated around a few peaks, some of which may be suboptimal. In principle it is
possible that the population might climb the “wrong” hill, leaving all of the in-
dividuals positioned around a local but not global optimum. Although there is no
universally accepted definition of what the terms mean, these distinct phases of the
search process are often categorised in terms of exploration (the generation of new
individuals in as yet untested regions of the search space), and exploitation (the
concentration of the search in the vicinity of known good solutions). Evolutionary
search processes are often referred to in terms of a trade-off between exploration and
exploitation. Too much of the former can lead to inefficient search, and too much of
the latter can lead to a propensity to focus the search too quickly. Premature con-
vergence is the well-known effect of losing population diversity too quickly, and



2 Evolutionary Algorithms 19

begin halfway end

Fig. 2.1. Typical progress of an EA illustrated in terms of population distribution

getting trapped in a local optimum. This danger is generally present in evolutionary
algorithms.

The other effect we want to illustrate is the anytime behaviour of EAs. We show
this by plotting the development of the population’s best fitness (objective function)
value over time (Fig. 2.2). This curve is characteristic for evolutionary algorithms,
showing rapid progress in the beginning and flattening out later on. This is typical
for many algorithms that work by iterative improvements to the initial solution(s).
The name “anytime” comes from the property that the search can be stopped at any
time, and the algorithm will have some solution, even if it is suboptimal.

Fig. 2.2. Typical progress of an EA illustrated in terms of development over time of the
highest fitness in the population

Based on this anytime curve we can make some general observations concern-
ing initialisation and the termination condition for EAs. In Section 2.3.7 we ques-
tioned whether it is worth putting extra computational effort into applying intelligent
heuristics to seed the initial population with better-than-random individuals. In gen-
eral, it could be said that the typical progress curve of an evolutionary process makes
it unnecessary. This is illustrated in Fig. 2.3. As the figure indicates, using heuristic
initialisation can start the evolutionary search with a better population. However,
typically a few (k in the figure) generations are enough to reach this level, making
the worth of extra effort questionable in general.

The anytime behaviour also gives some general indications regarding the choice
of termination conditions for EAs. In Fig. 2.4 we divide the run into two equally
long sections. As the figure indicates, the progress in terms of fitness increase in



20 Á.E. Eiben and J.E. Smith

Fig. 2.3. Illustration of why heuristic initialisation might not be worth additional effort. Level
a shows the best fitness in a randomly initialised population, level b belongs to heuristic
initialisation

Fig. 2.4. Illustration of why long runs might not be worth performing. X shows the progress
in terms of fitness increase in the first half of the run, while Y belongs to the second half

the first half of the run (X) is significantly greater than in the second half (Y ). This
provides a general suggestion that it might not be worth allowing very long runs. In
other words, because of frequently observed anytime behaviour of EAs, we might
surmise that effort spent after a certain time (number of fitness evaluations) are
unlikely to result in better solution quality.

We close this review of EA behaviour by looking at EA performance from a
global perspective. That is, rather than observing one run of the algorithm, we con-
sider the performance of EAs for a wide range of problems. Fig. 2.5 shows the
1980s view after Goldberg [325]. What the figure indicates is that robust problem
solvers –as EAs are claimed to be– show a roughly evenly good performance over
a wide range of problems. This performance pattern can be compared to random
search and to algorithms tailored to a specific problem type. EAs clearly outperform
random search. In contrast, a problem-tailored algorithm performs much better than
an EA, but only on the type of problem for which it was designed. As we move
away from this problem type to different problems, the problem-specific algorithm
quickly loses performance. In this sense, EAs and problem-specific algorithms form
two opposing extremes. This perception played an important role in positioning EAs
and stressing the difference between evolutionary and random search, but it grad-
ually changed in the 1990s based on new insights from practise as well as from



2 Evolutionary Algorithms 21

Fig. 2.5. 1980s view of EA performance after Goldberg [325]

theory. The contemporary view acknowledges the possibility of combining the two
extremes into a hybrid algorithm. This insight is the main premise behind memetic
algorithms that form the subject matter of the present book.

2.5 Evolutionary Algorithm Variants

Throughout this chapter we present evolutionary computing as one problem-solving
paradigm, mentioning four historical types of EAs as “dialects”. These dialects have
emerged independently to some extent (except GP that grew out of GAs) and de-
veloped their own terminology, research focus, and technical solutions to realise
particular evolutionary algorithm features. The differences between them, however,
are not crisp – there are many examples of EAs that are hard to place into one of the
historical categories. It is one of our main messages that such a division is not highly
relevant, even though it may be helpful in some cases. Existing literature however,
often uses the names of these dialects to position a particular method and we feel
that a good introduction should also include some information about them. To this
end, we provide a simple summary in Table 2.2.

It is worth to note that the borders between the four main EC streams have di-
minishined over the last decade. Approaching EAs from a “unionist” perspective it
is better not to distinguish different EAs by the traditional stream they belong to,
but by their main algorithmic components: representation, recombination operator,
mutation operator, parent selection operator, and survivor selection operator. Re-
viewing the details of the commonly used operators and related parameters exceeds
the scope of this chapter. Hence, we are forced to use (the names of) them without
further explanation here and refer to a modern text book, such as [239] or [193],
for those details. Table 2.3 provides an illustration showing how particular choices
can lead to a typical genetic algorithm or evolution strategy, thus linking the two
perspectives.

Considering Table 2.3, one may notice that it does not provide all details needed
for a complete specification of an evolutionary algorithm. For instance, the popula-
tion size is not specified. This observation raises the issue of algorithm parameters
and, one step further, the issue of algorithm design.



22 Á.E. Eiben and J.E. Smith

Table 2.2. Overview of the main EA dialects

Component EA Dialect

or feature GA ES EP GP

Typical problems Combinatorial Continuous Optimisation Modelling

optimisation optimisation

Typical Strings over a Vectors of Appl. specific Trees

representation finite alphabet real numbers often as in ES

Role of Primary variation Important, but Never applied Primary/only

recombination operator secondary variation operator

Role of Secondary Important, The only Secondary,

mutation variation sometimes the variation sometimes

operator only operator operator not used at all

Parent Random, biased Random, Each individual Random, biased by

selection by fitness uniform creates one child fitness

Survivor Random, Deterministic, Random, Random,

selection biased by biased by biased by biased by

fitness fitness fitness fitness

Table 2.3. A typical GA and ES as an instantiation of the generic EA scheme

GA ES

Representation bit-strings real-valued vectors

Recombination 1-point crossover intermediary

Mutation bit-flip Gaussian noise by N(0,σ )

Parent selection 2-tournament uniform random

Survivor selection generational (μ,λ )
Extra none self-adaptation of σ

In the broad sense, algorithm design includes all decisions needed to specify an
algorithm for solving a given (type of) problem. A decision to use evolutionary algo-
rithms implies a general algorithmic framework – the one described in the beginning
of this chapter. Using such an algorithmic framework implies that the algorithm de-
signer adopts many design decisions (that led to the framework) and only needs to
specify a “few” details. The principal challenge for algorithm designers is caused by
the fact that the design details largely influence the performance of the algorithm. A
well designed EA can perform orders of magnitude better than one based on poor
choices. Hence, algorithm design in general, and EA design in particular, is an op-
timization problem itself, where the objective to be optimised is the performance of
the EA.

As stated above, designing an EA for solving a given problem requires fill-
ing in the details of the generic EA framework appropriately. To denote these



2 Evolutionary Algorithms 23

details one can use the term EA parameters. Using this terminology, designing
an EA for a given application amounts to selecting good values for the param-
eters. For instance, the definition of an EA might include setting the parameter
crossoveroperator to onepoint, the parameter crossoverrate to 0.5, and the
parameter populationsize to 100. In principle, this is a sound naming conven-
tion, but intuitively, there is a difference between choosing a good crossover opera-
tor from a given list, e.g., {onepoint,uniform,averaging}, and choosing a good
value for the related crossover rate pc ∈ [0,1]. This difference can be formalised if
we distinguish parameters by their domains. The parameter crossoveroperator
has a finite domain with no sensible distance metric or ordering, whereas the domain
of the parameter pc is a subset of IR with the natural structure for real numbers. This
difference is essential for searchability of the design space. For parameters with
a domain that has a distance metric, or is at least partially ordered, one can use
heuristic search and optimization methods to find optimal values. For the first type
of parameters this is not possible because the domain has no exploitable structure.
The only option in this case is sampling.

The difference between these two types of parameters has already been noted in
evolutionary computing, but various authors use various naming conventions. For
instance, [47] uses the names qualitative and quantitative parameters respectively,
[951] distinguishes between symbolic and numeric parameters, while [67] calls them
categorical and numerical. Furthermore, [819] calls unstructured parameters com-
ponents and the elements of their domains operators and in the corresponding ter-
minology a parameter is instantiated by a value, while a component is instantiated
by allocating an operator to it. In the context of statistics and data mining one distin-
guishes two types of variables (rather than parameters) depending on the presence
of an ordered structure, but a universal terminology is lacking here too. Commonly
used names are nominal vs. ordinal and categorical vs. ordered variables. Look-
ing at it from a technical perspective, the very essence of the matter is the pres-
ence/absence of a (partial) ordering which is pivotal to searchability. This aspect is
best captured through the names ordered and unordered parameters.

Table 2.4. Possible pairs of terms to distinguish the two types of EA parameters

Type I Type II

qualitative parameter quantitative parameter

symbolic parameter numeric parameter

categorical parameter numerical parameter

component parameter

nominal variable ordinal variable

categorical variable ordered variable

unordered parameter ordered parameter



24 Á.E. Eiben and J.E. Smith

For a clear distinction between these cases we propose to use the terms qualitative
parameter and quantitative parameter and to call the elements of the parameter’s
domain parameter values.3 In practice, quantitative parameters are mostly numeri-
cal values, e.g., the parameter crossover rate uses values from the interval [0,1], and
qualitative parameters are often symbolic, e.g., crossoveroperator. However, in
general, quantitative parameters and numerical parameters are not the same, because
it is possible to have an ordering on a set of symbolic values - for example colours
may be ordered by how they appear in the rainbow. Note that the terminology we
propose here does not refer to the presence/absence of the (partial) ordering. In this
respect, ordered vs. unordered could have been be better, but we prefer quantitative
and qualitative for non-technical reasons, feeling that their use is more natural.

It is important to note that the number of parameters of EAs is not speci-
fied in general. Depending on particular design choices one might obtain dif-
ferent numbers of parameters. For instance, instantiating the qualitative param-
eter parentselection by tournament implies a new quantitative parameter
tournamentsize. However, choosing for roulettewheel does not add any pa-
rameters. This example also shows that there can be a hierarchy among parameters.
Namely, qualitative parameters may have quantitative parameters “under them”. If
an unambiguous treatment requires we can call such parameters sub-parameters,
always belonging to a qualitative parameter.

Distinguishing qualitative and quantitative parameters naturally leads to distin-
guishing two levels in designing a specific EA for a given problem. In the resulting
terminology we say that the high-level qualitative parameters define the EA, while
the low-level quantitative parameters define a variant of this EA. Table 2.5 illustrates
this matter.

Adopting this naming convention we can give a detailed answer to the question
that forms the title of this chapter: What are Evolutionary Algorithms? An evolu-
tionary algorithm is a partial instantiation of the generic EA framework where the
values to instantiate qualitative parameters are defined, but the quantitative parame-
ters are not. After specifying all details, including the values for all parameters, we
obtain an EA instance. This terminology enables precise formulations, meanwhile it
enforces care with phrasing. Clearly, this distinction between EAs and EA instances
is similar to distinguishing problems and problem instances. For example, “TSP”
represents the set of all possible problem configurations of the travelling salesman
problem, whereas an instance is one specific problem, e.g., the 10 cities TSP with
a given distance matrix D and Euclidean metric. If rigorous terminology is required
then the right phrasing is “to apply an EA instance to a problem instance”.

3 Parameter values belonging to qualitative parameters, e.g., one-point-crossover, uniform-
crossover, or tournament-selection, ranked-biased-selection, are usually called operators.
This is fully consistent with our proposal here and can be seen as a matter of an additional
naming convention.



2 Evolutionary Algorithms 25

Table 2.5. Three EA instances specified by the qualitative parameters: Representation, re-
combination, mutation, parent selection, survivor selection, and the quantitative parameters :
mutation rate (pm), mutation step size (σ ), crossover rate (pc), population size (μ), offspring
size (λ ), and tournament size. The EA instances in columns EA1 and EA2 are just variants of
the same EA. The EA instance in column EA3 belongs to a different EA.

EA1 EA2 EA3

Representation bitstring bitstring real-valued

Recombination 1-point 1-point averaging

Mutation bit-flip bit-flip Gaussian N(0,σ )

Parent selection tournament tournament uniform random

Survivor selection generational generational (μ,λ )
pm 0.01 0.1 0.05

σ n.a. n.a 0.1

pc 0.5 0.7 0.7

μ 100 100 10

λ n.a. n.a. 70

tournament size 2 4 n.a.

2.6 Designing and Tuning Evolutionary Algorithms

As mentioned above, designing an good EA is in fact an optimisation problem. This
problem is far from trivial, because there is very little known in general about the
influence of EA parameters on EA performance. Most researchers and practitioners
agree that the parameters of EAs interact with each other in a complex, non-linear
way and even after 30 years of research there are only vague heuristics for design-
ing a good EA instance for a given problem. In practice, the EA is often chosen
intuitively or driven by habits, e.g., one may have a personal preference for GAs,
while others’ default could be ES. After that, parameter values are mostly selected
by conventions (mutation rate should be low), ad hoc choices (why not use uniform
crossover), and experimental comparisons on a limited scale (testing combinations
of three different crossover rates and three different mutation rates).

Figure 2.6 shows the general scheme of the EA design process attempting to op-
timise algorithm performance on a given problem.4 The designer is testing different
parameter values, whose utility is determined by the performance of the correspond-
ing EA instance on the given problem instance. Formally, such a design session is
a trial-and-error (a.k.a. generate-and-test) procedure, resulting in specific values for
the parameters of the EA in question. Given that all parameters of an EA must
be specified before it can be applied, finding good parameter values is an absolutely
necessary condition for any application, hence an immediate need for all researchers

4 To be very precise: optimise the performance of an EA instance on a given problem
instance.



26 Á.E. Eiben and J.E. Smith

Fig. 2.6. Illustration of 3-tier hierarchy behind EA design showing the control flow (left), and
the information flow (right).

and practitioners. In this light, it is odd that the evolutionary computing community
has not adopted algorithmic optimisers to solve the EA parameter tuning problem.
Ironically, it has been noted long ago that the EA tuning problem falls in the problem
class where EAs are claimed to be competitive solvers:

• the given problem has many parameters leading to a large search space,
• the problem has parameters of different types (e.g., reals, integers, symbolic

values),
• there are complex non-linear interactions between the parameters leading to a

complex non-linear objective function,
• the objective function has many local optima,
• there is noise in the data hindering exact calculations.

This insight has motivated the so-called meta-EAs, whose first representatives,
meta-GAs, have been developed already in the late eighties to tune GA parameters
[335]. However, meta-GAs or meta-ES [381] have never been used on a large scale.
This really suboptimal situation is slowly changing over the last couple of years.
The new development takes place along different research lines. First, meta-EAs
are being “unearthed”, enriched with additional features and tested for their ability
to find good EA parameters, see, for instance, [951]. Another line of research con-
cerns generic parameter tuners, developed and used to optimise EA parameters. The
Sequential Parameter Optimization Toolbox (SPOT), [47, 48, 49] uses an iterative
procedure, repeatedly testing parameter vectors and using the results to fit a model to
predict the utility of other parameter vectors. Over the course of a run, SPOT simul-
taneously improves the prediction model and the parameter vectors. The Relevance
Estimation and VAlue Calibration method (REVAC) implicitly creates probability
distributions regarding the parameters (one probability distribution per parameter)
in such a way that parameter values that proved to be good in former trials have
a higher probability then poor ones. Initially, all distributions represent a uniform
random variable and after each new test they are updated based on the new informa-
tion. After terminating the tuning process, i.e., stopping REVAC, these distributions
can be retrieved and analysed, showing not only the range of promising parame-
ter values, but also disclosing information about the relevance of each parameter,



2 Evolutionary Algorithms 27

[650, 651, 819]. As for the (near) future, it seems safe to predict that the increasing
maturity of such parameter tuners will lead to their adoption in the EC commu-
nity. This, in turn, can increase the performance of EAs on a large scale and deliver
novel insights and knowledge about the relationships between EA parameters and
EA performance.

2.7 Concluding Remarks

We have described the basic evolutionary paradigm and how it encompasses a wide
range of iterative population-based global search methods. Representatives from this
class of methods have now been successfully applied to a huge range of different
application domains as can be witnessed by the ever increasing volume of papers,
conferences and journals. The prime difference between evolutionary and memetic
algorithms (MAs) is that, as we have described them, EAs do not consider a step of
self-improvement within the cycle - they just work on the outcome of randomised
variation. In contrast Memetic Algorithms introduce a stage of individual (rather
than population) learning, so that a solution (or its genotype) is (often systemati-
cally) perturbed and replaced by the new solution (or possibly its genotype) if that
has higher fitness, independently of the rest of the population.


	Evolutionary Algorithms
	Motivation and Brief History
	What Is an Evolutionary Algorithm?
	Components of Evolutionary Algorithms
	Representation (Definition of Individuals)
	Evaluation Function (Fitness Function)
	Population
	Parent Selection Mechanism
	Variation Operators
	Survivor Selection Mechanism (Replacement)
	Initialisation
	Termination Condition

	The Operation of an Evolutionary Algorithm
	Evolutionary Algorithm Variants
	Designing and Tuning Evolutionary Algorithms
	Concluding Remarks




