
Chapter 7

Production Planning Approaches

In this chapter, we discuss production planning approaches for semiconductor
manufacturing. Planning is on the highest level of the PPC hierarchy. Plan-
ning approaches provide important input for the order release schemes dis-
cussed in Chap. 6. We start by describing short-term planning approaches.
Spreadsheet modeling and simulation are used in this situation.

Then, we continue by describing master planning approaches in semi-
conductor manufacturing. They are used to assign production quantities to
different facilities in different periods of time for a horizon of several months.
Weekly time periods are considered. Simulation-based performance assess-
ment of master planning approaches is briefly discussed. Next, we discuss
capacity planning approaches. In contrast to master planning, these ap-
proaches deal with a longer planning horizon and monthly time periods. We
discuss only deterministic planning approaches for master and capacity plan-
ning. Then, we present enterprise-wide planning approaches. In this situation,
we consider a planning horizon of several years and quarters as periods. We
also deal with the question of whether or not it is beneficial to open new facil-
ities. Deterministic and stochastic settings are described for enterprise-wide
planning problems.

One typical assumption in planning approaches is a fixed CT; however, the
CT is load-dependent. Therefore, we discuss different possibilities to model
load-dependent CT within planning approaches. We consider CT-TP curves,
iterative simulation, and finally clearing functions.

7.1 Short-Term Capacity Planning

In this section, we start by discussing the motivation of spreadsheet-based and
simulation-based short-term capacity planning. We then make the first ap-
proach more concrete for wafer fabs. Spreadsheet-based short-term capacity
planning approaches are discussed for back-end facilities. Finally, short-term
capacity planning based on discrete-event simulation is described.
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208 7 Production Planning Approaches

7.1.1 Motivation

Spreadsheet-based capacity planning models are ubiquitous. From the early
days of Lotus 123 and Quattro Pro to today’s Microsoft Excel-based tools,
many planners and other wafer fab personnel have developed their own
spreadsheet capacity model to make important decisions with regard to
near-term capacity needs in the wafer fab (see Occhino [216] and Ozturk
et al. [224]). While they can and do vary in size, complexity, level of de-
tail, focus area, and accuracy or validity, spreadsheet-based tools are widely
accepted methods for short-term capacity analysis in both wafer fabs and
assembly and test facilities.

The typical goal of any short-term capacity planning spreadsheet model
is to calculate the expected utilization of one or more machines or machine
groups under some amount of demand or loading. While this utilization cal-
culation is often needed to assess the feasibility of a proposed machine loading
scenario or to justify the need for additional wafer fab equipment, the under-
lying mathematics take a variety of forms. The ways in which utilization is
defined or calculated and then reported by wafer fab personnel often differ due
to one or more modeling assumptions and/or the contingency factors used
by the analyst. While spreadsheet-based short-term capacity analyses are
predominantly used throughout the front-end and back-end facilities world-
wide, the models quite often contain static, deterministic data inputs that
are updated on some sort of periodic or as-needed basis. While these updates
can be automatically made using SQL queries into corporate data sources
(cf. Witte [323] for such an approach), even the most up-to-date information
being included in the model will still produce only a static, deterministic
estimate of machine group capacity utilization.

Unfortunately, in the absence of some fairly sophisticated queueing net-
work analysis (which is rare in the short-term capacity planning models),
spreadsheet-based capacity analysis is unable to accurately model and pre-
dict dynamic performance measures associated with the planned capacity
levels, such as ACT, WIP levels, and CT variability. While this may not al-
ways be of interest to managers conducting strategic capacity analyses such
as yearly or five-year plans, short-term capacity analysis often is interested
in expected out dates for products/jobs currently in the manufacturing line
both in the front-end and the back-end. Discrete-event simulation can help
to provide a dynamic perspective for short-term capacity planning.

7.1.2 Spreadsheet-Based Approaches for Wafer Fabs

The basic approach for short-term capacity planning in wafer fabs typically
requires some of the following set of machine-specific input data for each
machine group w that we desire to analyze:

• Number of machines contained within machine group w, denoted by Q(w).
• Percentage of time that machines in machine group w are available on
average for processing wafers, denoted by Av(w).
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• Percentage of average available time each time period that machines in
machine group w are processing wafers, denoted by Eff(w).

• Total number of hours per time period that machines in machine group w
are scheduled for production, denoted by SH(w).

Multiple, different efficiency values can also be used in place of a single pa-
rameter estimate. For example, some wafer fabs track operator efficiency,
machine loading efficiency, and other measures. In this case, the collection
of efficiency measures, all of which are defined from 0% to 100%, would be
multiplied together to compute an overall efficiency measure for the machine
in question. With these machine-specific inputs, the total number of expected
productive hours PH(w) can be computed for each machine group w as follows:

PH(w) := Q(w)Av(w)Eff(w)SH(w). (7.1)

For example, an etch machine group containing eight machines, each of which
is scheduled 24 h per day, seven days per week, has a historical availability due
to both scheduled and unscheduled downtime events of 92%. In addition, the
corporate policy is to assume an 85% productivity efficiency, which relates
to the company’s desired minimum amount of idle time on the machine, and
a 90% load efficiency, which pertains to how fully the machine is typically
loaded with regard to maximum load size. In this case, we obtain:

Eff(w) = (0.85)(0.9) = 0.765. (7.2)

Applying Eq. (7.1) results in the expected number of productive hours per
week given by

PH(w) = (8)(0.92)(0.765)(168) = 945.9. (7.3)

Once the available machine group productive hours are known, the next step
is to characterize how the machine group is impacted, i.e., visited, by demand
for a specific product that is made according to some specified process flow
or route i, i.e., route-specific information.

Given the reentrant nature of front-end wafer fabrication processes, it is
important to capture a number of inputs to properly characterize a machine
group’s route-specific information. These inputs should include recipe-based
parameters as different recipes are visited various numbers of times in a typ-
ical manufacturing route i. In addition, since the speed or processing rate of
a machine can be recipe-dependent, this too should be taken into account.

With this in mind, route-specific inputs often contain some of the following
inputs for recipe r:

• Number of times the current recipe r is visited for route i, denoted by NVir.
• Rate at which recipe r processes wafers, expressed in wafers per hour, on
route i, denoted by UPHir.

• Percentage of recipe r wafers that must be reworked on route i, denoted
by RWPir
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In the case where multiple recipes are specified for a given route, typical
capacity analyses aggregate the inputs to calculate a total number of visits,
as well as average UPH and RWP values. Average UPH is calculated using a
visits-weighted harmonic mean. A harmonic mean is required when any time
rates, i.e., some quantity per unit time, are to be averaged, such as units
per hour. The weighted harmonic mean of j positive real numbers n1, . . . ,n j

associated with weights w1, . . . ,wj is defined as follows:

H =
j

∑
k=1

wk

/ j

∑
k=1

wk

nk
. (7.4)

Assume route i has j different recipes that machine group w encounters and
that recipe l, l = 1, . . . , j is visited NVil times by machine group w. A visits-
weighted harmonic mean is used to calculate the average UPH, denoted by
AUPH, for machine group w on route i with ∑ j

l=1 NVil total visits as follows:

AUPHi(w) :=
j

∑
l=1

NVil

/ j

∑
m=1

NVim

UPHim(w)
. (7.5)

The average RWP, denoted by ARWP, is a visits-weighted arithmetic mean
that is given by

ARWPi(w) :=
j

∑
l=1

(NVil RWPil(w))
/ j

∑
m=1

NVim. (7.6)

Given the machine- and route-specific inputs, a short-term capacity analysis
can be performed to determine the maximum number of wafers that machine
group w can feasibly process in some desired period of time for route i with
∑ j

l=1 NVil total visits by machine group w on route i. This is called the maxi-
mum number of wafer starts per time period (MaxWSPT) and is determined
as follows:

MaxWSPTi(w) =
PH(w)AUPHi(w)(1−ARWPi(w))

∑ j
l=1 NVil

. (7.7)

It follows that a similar analysis across the different routes to which machine
group w is assigned will provide a range of MaxWSPTi(w) values for the
different routes. From this point, performing a short-term analysis across all
machine groups used on a given route i will reveal the true maximum number
of wafer starts per week that each route i can feasibly accommodate in terms
of available capacity. This is equal to the minimum MaxWSPTi(w) value for
all machine groups visited on route i.

Finally, now that machine group- and route-specific parameters are known,
the demand placed on the machine, i.e., demand-specific information, is the
last piece of information required to compute the machine group’s utilization.
This information is typically specified in terms of the following inputs:
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• The number of wafer starts planned for route i in the period, denoted
by PSi.

• The number of days in the period for which the analysis is being conducted,
denoted by ND

Clearly, some unit conversion may be required to convert PSi to a weekly
quantity based on ND. Once this is reconciled, machine group w’s capacity
loading can be calculated as follows:

CLP(w) = ∑
i∈Routes

PSi

MaxWSPWi(w)
. (7.8)

It is possible, even desirable, to maximize CLP(w) for each machine group
w to 100%, as this quantity is related to utilizing productive hours rather
than total hours. Recall that we previously used various efficiency and avail-
ability factors to derate total hours down to the expected available number
of PH(w). Therefore, a 100% value for CLP(w) does not mean the machine
group is always busy, i.e., 100% utilized, but rather that the machine group is
completely utilizing all planned available productive hours. It follows that be-
cause not all machine groups are required for processing wafers on all routes,
wafer fab personnel are able to quickly analyze a variety of starts scenarios
in such a spreadsheet-based capacity planning tool. After analyzing corpo-
rate planning’s demand statement, the capacity planning tool reports the
expected machine utilization levels if such a plan were implemented. Once
the user appropriately adjusts the starts plan to make it capacity-feasible,
subsequent discussions are typically had with sales and marketing to see if
any additional products for which capacity is available to start can be sold. If
so, additional starts are analyzed within the capacity planning tool with the
goal of maximizing the number of machine groups for which CLP(w) attains
its maximum 100% value. In this way, the corporation’s overall goal of max-
imizing profits is pursued via the appropriate, feasible utilization of available
production capacity.

The above described methodology for front-end short-term capacity plan-
ning was used at Micrel Semiconductor to provide greater visibility into the
hidden factory associated with Micrel’s front-end wafer fabs. This hidden
factory refers to the incremental manufacturing capacity that exists within a
given wafer fab that is not being realized due to a combination of mislead-
ing machine performance assumptions and suboptimal wafer starts plans. By
specifying accurate, up-to-date machine performance inputs to the capacity
model, Micrel’s wafer fabs provide both wafer fab and corporate planners
a clear view of the amount of route-specific wafer starts that can be ac-
commodated in their wafer fab. Similarly, by comprehending current market
demands and forecasted orders, Micrel’s planners provide Micrel’s wafer fabs
with capacity-feasible wafer starts plans that maximize the manufacturing
capacity within each Micrel wafer fab.
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7.1.3 Spreadsheet-Based Approaches for Back-End

In contrast to front-end processes, back-end processes are characterized by lin-
ear, rather than reentrant, process flows. CT in back-end facilities is generally
measured in days rather than weeks. Although back-end machine groups are
typically visited only a single time during a process flow, additional comple-
xities exist in the back-end, such as the need for auxiliary handler equipment
in final test processes (cf. the description in Sect. 2.2.3) and the fact that
device outs, i.e., shipments to customers, are the typical demand-specific in-
puts, rather than wafer starts, that make short-term capacity planning for
back-end facilities non-trivial.

Front-end wafers are sent to a sorting process that evaluates each individ-
ual die’s functionality and marks defective dies in an electronic wafer map.
This map electronically records the good and bad dies on the entire wafer.
The map travels electronically to the assembly area with the wafer, and the
assembly equipment reads the map such that it knows what good dies to as-
semble and then send on to final test. Back-end short-term capacity planning
is complicated by the fact that hundreds of wafers from the front-end turn
into hundreds of thousands of individual dies that are to be packaged as func-
tional ICs, memory products, communications modules, or other products.

Spreadsheet-based tools are prevalent across back-end facilities. Similar
to the front-end discussion in Sect. 7.1.2, back-end capacity planning re-
quires machine-specific, route-specific, and demand-specific inputs. While the
machine-specific input parameters are quite similar, back-end processes for
electrical testing of individual dies, for example, require slightly different
route-specific information. Furthermore, back-end demand-specific informa-
tion may be specified in a variety of units of measure, such as wafers for
the sort process or thousands of dies for the assembly and test processes.
However, the same approach can be taken in order to estimate equipment
utilization and/or capacity loading.

Consider the final electrical testing phase of the back-end process, a com-
mon bottleneck operation. The equipment associated with this step includes
not only the tester but an accompanying handler at a minimum and poten-
tially a load board (cf. Sect. 2.2.3). Route-specific inputs for a short-term
capacity analysis for the electrical test of die d may include the following:

• The amount of time (in seconds) required for the tester to locate/navigate
to the die being tested, denoted by IT(d)

• The amount of time (in seconds) required to test an individual die, denoted
by TT(d)

• The number of test programs that an individual die must undergo, for
example, room temperature test, elevated temperature test, etc., denoted
by I(d)
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• The number of locations on the die to be tested, denoted by S(d)
• The probability that a die being tested functions properly, i.e., yield, de-
noted by Y (d)

Consider device d that is to be electrically tested. If we assume O(d) indivi-
dual die outs are required by customers for device d, then the total number
of test insertions required is calculated as

TI(d) := O(d)I(d)
/

Y (d). (7.9)

Now that the total number of test insertions is determined, the total amount
of tester and handler time required to electrically test device d, denoted by
total test hours (TTH), is calculated as

TTH(d) := TI(d)(IT(d)+TT(d))S(d)
/

3600. (7.10)

In Eq. (7.10), the 3,600 value in the denominator is used to convert seconds
into hours. This total number of hours required for final testing to produce
O(d) good customer units out of device d would then be summed up with all
other devices that require similar back-end equipment in order to compute
the capacity loading for each machine group and handler group using the
previously defined machine- and handler-specific inputs.

An interesting reality in short-term capacity planning for back-end fa-
cilities is the comprehension of both tester and handler capacity require-
ments. Consider the following resource requirements resulting from a capacity
analysis:

• Device LM001 requires 27.5 h of tester T1 and handler H1 time.
• Device JWF223 requires 42.5 h of tester T1 and handler H2 time.
• Device SJM11 requires 30.0 h of tester T2 and handler H1 time.

Clearly, this product mix results in a total of 27.5 + 42.5 = 70.0h of required
tester T1 time and 30.0 h of tester T2 time. However, in terms of the handling
resources, a total of 27.5 + 30.0 = 57.5h of handler H1 time is required, in
addition to 42.5 h of handler H2 time. In this case, assuming a 24-h work
day and an 85% efficiency factor, the required number of resources needed
to produce these desired device outs in a single day would be calculated as
follows:

• Number of required testers T1: � 70
24(0.85)�= 4.

• Number of required testers T2: � 30
24(0.85)�= 2.

• Number of required handlers H1: � 57.5
24(0.85)�= 3.

• Number of required handlers H2: � 42.5
24(0.85)�= 3.

Therefore, the utilization of the tester and handler resources must be care-
fully computed as above so that accurate short-term capacity planning is per-
formed that produces effective estimates of capacity loading and/or resource
utilization. This is necessary when one considers the fact that an insufficient
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amount of tester or handler resources can limit back-end test capacity.
Although typically not the case, additional auxiliary resources, such as load
boards and/or operators, can also limit capacity. If this is potentially the
case in the back-end facility being analyzed, then a similar analysis should
be performed on those resources as well, as they also can be modeled in
terms of machine-, route-, and demand-specific inputs. We note that all the
calculations described in this section can be performed by spreadsheets.

7.1.4 An Integrated Approach Using Simulation

Often, a result of short-term capacity analysis is the expected out dates
for products/jobs currently in the BS both in the front-end and back-end.
Discrete-event simulation can help to provide a dynamic perspective for short-
term capacity planning. While calculating such a WIP Flush projection can
be done in a spreadsheet using historical estimates for expected process step
CT, many analysts have turned to discrete-event simulation methods as they
are designed to accommodate many of the uncertain realities present in wafer
fabs that spreadsheet models do not readily model, such as machine failures
(cf. Sect. 3.2.8).

While spreadsheet-based models do include machine availability assump-
tions, stating that a machine is available 92% of the time, for example, is
simply a high-level (but necessary) assumption. This is different from the
capability provided in simulation models to specify both machine TTF and
TTR distributions. The same 92% availability can be modeled as mean TTF
of 100h and mean TTR of 8 h, for example, in a simulation model when TTF
and TTR are assumed to be exponentially distributed with rate parameter
λ = 0.010 and λ = 0.125, respectively.

A validated simulation model of the wafer fab can be automatically po-
pulated with the current WIP at each process step and the status of each
machine group such that a short-term WIP Flush analysis can be conducted
to estimate the day and time one or more jobs of interest are expected to
exit the BS. This can be especially useful when customers are calling to ask
when their requested products will be available to them. In addition, wafer
fabs sometimes perform WIP Flush runs to estimate if they will be able to
make their quarterly shipment goals to their back-end facilities.

It is important to note that many of the inputs required to build a valid
simulation model can also be found in spreadsheet-based capacity analysis
models, and as such, one powerful technique for performing short-term ca-
pacity analysis studies is an integrated approach that utilizes the strengths
of both methods. First, the spreadsheet model can be used to accurately de-
termine resource levels in terms of number of machines, operators, and/or
other capacitated resources that are required to make some desired quantity
of goods. The resulting resource levels can then be fed into the simulation
model, along with process flow, equipment, and demand information, and
this proposed BS and BP configuration can be simulated to ascertain the
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resulting dynamic performance of the wafer fab in terms of CT and WIP
levels.

While this integrated approach has proven quite valuable, an additional
level of model utility can be achieved when the results of the simulation runs
are used to change some of the underlying assumptions and/or inputs con-
tained in the spreadsheet capacity analysis model. The analyst can fine-tune
the desired performance of the wafer fab under study by using both modeling
approaches in this interactive fashion. This can be especially important con-
sidering the ability of a spreadsheet model to compute required investment
levels regarding new equipment acquisition and personnel hiring decisions.
By using both spreadsheet- and simulation-based short-term capacity analy-
sis methods, a greater level of insight and understanding may be afforded to
the analyst conducting the study.

7.2 Master Planning

Master planning (MP) is somewhere between short-term capacity planning
and more strategic capacity planning. It deals with determining appropriate
wafer quantities for several products, several production sites, and several
periods of time.

A master plan typically has a horizon of six months divided into weekly
time buckets. Since market demand is not entirely known when planning
a couple of weeks or months ahead, we have to distinguish between firm
customer orders and additional forecasts. Explicit customer requirements are
confirmed, postponed, or reduced by the order management process based on
available supply. On the other hand, the demand planning process performed
every month by sales and marketing departments tries to foresee the rest of
the market needs. Both are main inputs of MP (see Vieira [313]).

In the following, we describe a model for master planning as proposed
by Ponsignon and Mönch [245]. The resultant model is called MPSC
for abbreviation. We start by presenting the related index information:

p = 1, . . . ,P : product index
t = 1, . . . ,T : time index

k = 0, . . . ,kmax : index for measuring capacity consumption
m = 1, . . . ,mmax : facility index

b = 1, . . . ,bm,max : bottleneck index for facility m

We assume that P products can be processed in mmax facilities consisting
of ihmax in-house locations and scmax subcontractor sites. The total number of
bottleneck work centers associated with all facilities is represented by bmax.
We assume that each bottleneck is assigned to exactly one facility and that
each facility has at least one bottleneck. This assumption is reasonable be-
cause planned bottlenecks, caused by very expensive machines, exist in all
wafer fabs. Clearly,∑mmax

m=1 bm,max = bmax holds. In case of subcontractors, we
model only one bottleneck, i.e., we set bm,max = 1. The quantity T stands for
the planning horizon measured in periods. We use one week as the length of
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a single time bucket. We assume for simplicity reasons that all products have
the same cycle time of kmax + 1 weeks.

The following parameters are part of MPSC:

Bp0 : initial backlog of product p at the beginning of the first period
Cmin

mbt : minimum utilization of bottleneck b in facility m in period t (in
hours or pieces)

Cmax
mbt : maximum available capacity of bottleneck b in facility m in period

t (in hours or pieces)
ccpmbk : capacity consumption of one wafer of product p when this product

is processed in facility m at bottleneck b and the completion period
is k periods ahead

d( f c)
pt : additional forecast demands for product p at the end of period t

d(o)
pt : confirmed orders for product p at the end of period t

hcpt : inventory cost for holding one wafer of product p during period t
Ip0 : initial inventory level of product p at the beginning of the first

period
lcpmt : location cost when product p is processed in facility m in period t,

i.e., fixed costs
mcpmt : cost to produce one wafer of product p in facility m in period t, i.e.,

variable costs
revpt : expected revenue per wafer for satisfying additional demands of

product p in period t
udcpt : cost due to unmet confirmed orders for one wafer of product p

postponed from period t to period t + 1

x(i)pmt : initial number of wafers of product p to be completed at the end
of period t in facility m, i.e., WIP started before the first period of
the model

α : large number

The following decision variables are used within the model:

xpmt : number of wafers of product p to be completed at the end of period
t in facility m

s( f c)
pt : sales quantity of additional forecast demand of product p in period

t

s(o)pt : sales quantity of confirmed orders of product p in period t
Bpt : backlog of confirmed orders of product p at the end of period t
Ipt : inventory level of product p at the end of period t

upmt : binary indicator variable for occurrence of fixed production costs of
product p in facility m in period t

The model can be formulated as follows:

max
P

∑
p=1

T

∑
t=1

{
revpts

( f c)
pt − hcptIpt − udcptBpt −

mmax

∑
m=1

(mcpmtxpmt + lcpmtupmt)

}

(7.11)
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subject to:

Ip,t−1 − s(o)pt − s( f c)
pt +

mmax

∑
m=1

(
xpmt + x(i)pmt

)
= Ipt , p = 1, . . . ,P, t = 1, . . . ,T, (7.12)

s(o)pt +Bpt = d(o)
pt +Bp,t−1, p = 1, . . . ,P, t = 1, . . . ,T, (7.13)

s( f c)
pt ≤ d( f c)

pt , p = 1, . . . ,P, t = 1, . . . ,T, (7.14)

Cmin
mbt ≤

P

∑
p=1

min(kmax,T−t)

∑
k=0

ccpmbk

(
xpm,t+k + x(i)pm,t+k

)
≤Cmax

mbt ,

m = 1, . . . ,mmax, b = 1, . . . ,bm,max, t = 1, . . . ,T, (7.15)

xpmt ≤ αupmt , p = 1, . . . ,P, m = 1, . . . ,mmax, t = 1, . . . ,T, (7.16)

xpmt ≥ 0,s(o)pt ≥ 0,s( f c)
pt ≥ 0, Ipt ≥ 0,Bpt ≥ 0, p = 1, . . . ,P,

m = 1, . . . ,mmax, t = 1, . . . ,T, (7.17)

upmt ∈ {0,1}, p = 1, . . . ,P, m = 1, . . . ,mmax, t = 1, . . . ,T. (7.18)

The objective is to maximize the overall difference between the revenues
and the sum of costs. The first term in the objective function (7.11) models
the revenues for fulfilling additional forecast demands. The costs for holding
inventory are modeled by the second term. The third term refers to penalty
costs for backlogged customer orders. The fourth and fifth terms represent
variable and fixed production costs, respectively.

Constraint (7.12) represents the flow balance in every period and for every
product. The inflows are the initial inventory, the production quantities, and
the WIP inventory; the outflows are the sales quantities related to confirmed
orders and forecasts and the ending inventory. Constraints (7.13) and (7.14)
relate sales quantities to market demand. Backlog is allowed only for customer
orders. In case of additional forecasts, we only consider a maximum bound.
The capacity restrictions for every bottleneck in each period are defined in
constraints (7.15) with minimum and maximum utilization limits. The overall
loading is calculated by taking production quantities and WIP inventory of
all products into account. We assume ∑P

p=1 ccpmb0 > 0 to ensure that there is

at least one product p such that ∑min(kmax,T−t)
k=1 ccpmbk > 0 for all t = 1, . . . ,T , b,

and m. Inequalities (7.16) set the binary variable upmt to 1 whenever there is
a positive production for the considered product, location, and time period.
On the other hand, upmt = 0 leads to xpmt = 0. It makes sure that an additional
facility is used only when it is necessary. Nonnegativity and binary conditions
are defined by constraints (7.17) and (7.18).

It is shown in [245] that this problem is NP-hard because a knapsack
problem can be reduced to a special case of it. Therefore, efficient heuristics
are proposed in [245]. A product-based decomposition heuristic and a GA are
described. The product-based decomposition procedure is similar to fix-and-
optimize approaches in lot sizing. It can be summarized as follows.
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Product-based Decomposition (PD)

1. Initialize the objective function value by fcurr := 0.
2. Sort the products with respect to the index Ip in descending order, where

we define

Ip :=
T

∑
t=1

udcptd
(o)
pt , p = 1, . . . ,P. (7.19)

3. Decompose the set of all products into n disjoint subsets P1, . . . ,Pn of equal
size, only the last subset might have a different size, such that products
with similar Ip values are part of the same subset or in consecutive subsets.

4. Solve MPSC given by objective function (7.11) and constraints (7.12)–
(7.18) for the current product subset Pi by taking the actual maximum
capacity limits into account and by setting the minimum capacity bounds
to zero. Increment fcurr with the objective value of the current subprob-
lem.

5. Decrease the maximum capacity limits as follows:

Cmax
mbt :=Cmax

mbt − ∑
p∈Pi

min(kmax,T−t)

∑
k=0

ccpmbk

(
xpm,t+k + x(i)pm,t+k

)
(7.20)

for each m = 1, . . . ,mmax, b = 1, . . . ,bm,max, and t = 1, . . . ,T .
6. As long as any product subset has not been considered, increment the

index i of the current product subset Pi and go to step 4, else return fcurr.

In step 3, the quantity n is determined by some preliminary computational
experiments in such a way that the subproblems in step 4 can be solved to
optimality by a MIP solver.

We see that the minimum capacity limit is ignored in the PD algorithm.
Consider that a minimum utilization threshold leads to an artificial increase
of production quantities for products of the first subset. As a result, the
remaining capacity may not be sufficient for other subsets. That is why an
a posteriori repair scheme where the bottleneck usage in each time period
is checked and increased in the case that the minimum bound is not met is
proposed by Ponsignon and Mönch [245].

Some computational results for P ∈ {50,100,200} and mmax ∈ {8,12} are
shown in Table 7.1. We provide the ratio of the objective function values
obtained by PD and by the MIP. The total number of considered problem
instances is 120. The MIP is solved using the commercial solver CPLEX. The
number of products within each subproblem is four, i.e., we have n := �P/4�.
The maximum computing time for the MIP is 30min per problem instance,
while the average computing time of PD for P = 50, P = 100, and P = 200 is
10, 15, and finally 30min, respectively.

We can see from Table 7.1 that the MIP gap increases quickly when the
number of products gets larger. Up to 100 products, PD behaves similar to
the MIP, but PD clearly outperforms the MIP for P = 200.
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Table 7.1: Computational results for MPSC

P ihmax scmax PD/MIP ratio Average MIP gap

50 6 2 0.9775 0.0318
50 8 4 0.9753 0.0185
100 6 2 0.9824 0.1441
100 8 4 0.9762 0.0786
200 6 2 1.1343 0.7361
200 8 4 1.1090 0.4008

More computational results, including results for the proposed GA, can be
found in [245]. Note that the GA is faster than PD, especially for large-scale
problem instances. However, PD usually performs better from a solution qual-
ity point of view. Some computational results using heuristics for master plan-
ning in a rolling horizon setting can be found in Ponsignon and Mönch [244].
An architecture similar to those described in Sect. 3.3.2 is used. Feedback
from the BS and the BP is taken into account with respect to backlog, in-
ventories, and capacity each time an MPSC instance is solved.

7.3 Capacity Planning

In contrast to master planning, the planning horizon for capacity is usually
one to three years. Capacity planning is therefore mid-term or long-term.
Instead of weeks, usually months or even quarters are used as periods. Con-
tinuous decision variables are generally appropriate for production quantities.
However, integer-valued decision variables come into play, when capacity ex-
pansion decisions are considered by purchasing new machines.

In the following, we present a multi-period capacity planning formulation
that is due to Barahona et al. [22]. We start by introducing the following
indices and sets that are used within the model:

j = 1, . . . ,J : operation index
i = 1 . . . , I : machine group index

I( j) : set of all machine groups that can perform operation j
J(i) : set of all operations that can be performed on machine group i
PT : set of primary machine groups
ST : set of secondary machine groups

t = 1, . . . ,T : period index
p : product index
P : set of all products

The following parameters are used within the model:

γpt : expected number of wafers completed per wafer started for product
p in period t

dpt : demand in wafers per day for product p in period t
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b jpt : number of passes, adjusted for yield, of operation j on product p
in period t

μit : initial capacity for machine group i in hours/day in period t
cit : unit capacity for machine group i in hours/day in period t

hi jt : number of hours to process one wafer through operation j on ma-
chine group i in period t

mit : cost of purchasing a new machine group i in period t
βt : total budget available for buying new machines in period t

αpt : upper bound for the unmet demand in wafers per day for product
p in period t

q1 : penalty for buying a primary tool
q2 : penalty for buying a secondary tool

The following decision variables are used in the model:

Upt : unmet demand for product p in wafers per day in period t
Wpt : number of wafers per day for product p that enter the wafer fab in

period t
O jit : number of wafers per day that require operation j on machine group

i in period t
Nit : number of new machines bought for machine group i in period t

The capacity planning model can be formulated as follows:

min
T

∑
t=1

∑
p∈P

Upt +
T

∑
t=1

(
q1 ∑

i∈PT

Nit + q2 ∑
i∈ST

Nit

)
(7.21)

subject to:

γptWpt +Upt = dpt , t = 1, . . . ,T, p ∈ P, (7.22)

∑
p∈P

b jptWpt = ∑
i∈I( j)

O jit , j = 1, . . . ,J, t = 1, . . . ,T, (7.23)

∑
j∈J(i)

hi jtO jit ≤ μit + cit

t

∑
τ=1

Niτ , t = 1, . . . ,T, i = 1, . . . , I, (7.24)

I

∑
i=1

mitNit ≤ βt , t = 1, . . . ,T, (7.25)

Upt ≤ αpt , p ∈ P, t = 1, . . . ,T, (7.26)

Upt ≥ 0,Wpt ≥ 0,O jit ≥ 0, t = 1, . . . ,T, p ∈ P, i = 1, . . . , I, (7.27)

Nit∈ IN, i = 1, . . . , I, t = 1, . . . ,T. (7.28)

The objective (7.21) of the model is minimizing the sum of the total unmet
demand and two penalty terms that discourage purchasing primary and se-
condary machines, respectively. Constraints (7.22) relate the demand for each
product to unmet demand and production quantities. It is assumed that the
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demand of all periods is satisfied with production from the same period.
This assumption is reasonable because inventory is generally kept very low in
semiconductor manufacturing. Note that 0 ≤ γpt < 1 models the occurrence
of yield in semiconductor manufacturing. Constraints (7.23) determine the
total number of wafers that require a specific operation distributed over all
possible machines as the sum of the corresponding production levels. Con-
straints (7.24) ensure that the total production load on machine group i is
smaller than the available capacity for this machine group measured in hours
per day of production in a specific period. Budget constraints for purchasing
new machines are given by constraints (7.25). Upper bounds for the unmet
demand are set by constraints (7.26). Finally, constraints (7.27) and (7.28)
express the fact that all decision variables are non-negative and that Nit is an
integer for each machine group and each period.

Note that a two-stage stochastic programming formulation for a situation
similar to that covered in model (7.21)–(7.28) is provided by Hood et al. [117]
and Barahona et al. [22]. The first stage deals with capacity expansion deci-
sions. The second stage is related to production decisions that can be made
when the demand profile is known with certainty. Several demand scenarios
with associated probabilities are provided to tackle the two-stage model sim-
ilar to that described in Sect. 3.2.4. However, additional difficulties have to
be resolved that are imposed by the integrality requirements for variable Nit .

We continue by briefly discussing the capacity optimization planning sys-
tem (CAPS). CAPS is a decision-support system used by IBM for strategic
planning of its semiconductor capacity (see Bermon and Hood [24]). It is
based on linear programming. CAPS determines the product mix that maxi-
mizes profit given the existing machine capacity. At the same time, it is also
able to determine the necessary capacity taking a given product mix into
account. The unrelated parallel machines that are typical for wafer fabs are
modeled in detail in the LP to determine a preferential order in which these
machine groups are used.

While capacity planning for a single wafer fab is addressed in model (7.21)–
(7.28) and by the CAPS model, a multi-facility situation is covered by the
model proposed by Habla and Mönch [113]. The model is somewhat similar
to the master planning model described in Sect. 7.2; however, assignment
decisions to single wafer fabs are not taken. Consequently, integer-valued
decision variables are not necessary. The objective is to maximize revenue for
forecasted orders and minimize at the same time production costs, inventory
holding costs, and costs for unmet committed orders. A quite general product
structure is assumed to allow for modeling make-to-stock, assemble-to-order,
and make-to-order production.

A detailed survey of strategic capacity planning approaches in semicon-
ductor manufacturing is presented by Geng and Jiang [97]. A stochastic pro-
gramming model for capacity planning in wafer fabs with uncertain demand
and capacity is described by Geng et al. [98].
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7.4 Enterprise-Wide Planning

Enterprise-wide semiconductor planning considers the allocation of products
to wafer fabs and then routing the wafers with the ICs for testing. The tested
wafers are routed to where they can be cut into individual chips and put in
a package. The packages are then sent to final test facilities for testing and
classification. The products are classified, i.e., binned, according to perfor-
mance, and shipped to final inventory warehouses, or demand centers, for
selling. Planning when to increase or decrease capacity at the production fa-
cilities as well as planning when and whether to build new facilities are some
of the possibilities for these operations, for example, purchasing a new ma-
chine for one of the bottleneck machine groups in a wafer fab, building a new
test facility in a new region, or subcontracting to a foundry. In the following,
we present a MIP that is due to Stray et al. [293]. The model can be used to
answer the following questions:

• What facilities should be built?
• What machines should be purchased?
• What products should be manufactured in which facilities?
• What demand should be met by subcontracting, and what demand should
be left unmet in order to maximize profit?

The model is focused at a strategic level, and a typical instance of the problem
covers a few years in several segments of perhaps three months per segment,
i.e., quarters. The level of detail is deep enough to support decisions such
as quarterly production amounts of each product in a company’s product
portfolio, including the routing of the product between facilities. The model
does not attempt to schedule individual jobs of products within facilities. The
model is presented below.

We use the following sets and indices in the model formulation:

FAM : set of product families
PKGp : set of packages, where one set PKGp is for each p in FAM
BINpq : set of bins for each product package q and family p
BETb : set of bins that can be sold as product with bin b characteristics

L : set of all location sets
LF : wafer fab set
LS : sort location set

LM : assembly set
LT : test set
LD : demand center set

MGl : set of all machine groups in location l
p : index for product families
q : index for packages
b : index for bins
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f , l : index for locations
i : index for machine types
t : index for time periods

In the remainder of this section, we use F,S,M,T,D as abbreviations for
fab, sort, assembly, test, and demand center, respectively.
The following parameters are part of the model:

PBClt : cost of building facility l in period t
POClt : cost of operating facility l in period t
PRClt : cost of removing facility l in period t
MPCilt : cost of purchasing a single machine i in facility l in period t
MOCilt : cost of operating machine i in facility l through period t

SCpt : cost for subcontracting one job of wafers of family p in period t
mil : number of machines initially installed in machine group i and

facility l
MAXS

il : maximum number of machines allowed in machine group i in
facility l

MAXT
l : total number of machines allowed in all machine groups in

facility l
αil : maximum machine utilization for machine group i in location l
Sil : average downtime of machine group i in hours in location l over

a period of length TPL
TPL : length of one period in hours

T : number of periods in the model
Cplt : fraction of product p in location l started in period t that finishes

in period t + 1
Cpqlt : fraction of product p and package q in location l started in period

t that finishes in period t + 1
Qplt : yield of product p in location l in period t

Q f pqlt : yield of the product p and package q in location l in period t,
where f is the wafer fab in which the original wafer was manu-
factured

Q f pqblt : resulting bins b of a product, depending on origin wafer fab f ,
family p, package q, location l, and time period t

Gpq : number of chips per wafer for family p and package q
Tipl : total time product p takes to complete on machine group i in

location l
Dpqblt : demand of a product p in package q and bin b at location l and

period t
PCplt : cost of starting product p at location l in period t
TCldt : transportation cost from l to d in period t
ICplt : inventory cost for product p in location l and period t

PVpqblt : sales price for product p in package q and bin b at demand
center l in period t
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PENpqbt : penalty for not meeting demand for product p in package
q and bin b in period t

WLSl : number of wafers in a job at wafer fabs and wafer sorts,
by location l

CLSl : number of chips in a job at assembly, test, and demand centers
by location l

LBTl : building time for location l
N : large number

All periods are of the same length in the model. The complementary frac-
tions of Cplt and Cpqlt finish in period t. In order to incorporate yield at the
test operations, the quantity Q f pqblt is summed over q for all p, and this
number has to be less than or equal to one.

The following decision variables are used within the model:

XS1
plt : number of jobs of product p to start in facility l in period t,

S1 ∈ {F,S,M,T}
XS1

f plt : number of jobs of product p produced in fab f to start in facility
l in period t, S1 ∈ {S,M,T}

XM
f pqlt : number of jobs of product p, package q, produced in fab f to

start in assembly facility l in period t
W S1,S2

plt : number of jobs of product p to put in inventory before (B) or
after (A) location l in period t, S1 ∈ {A,B}, S2 ∈ {F,S,M,T,D}

W S1,S2
f plt : number of jobs of product p produced in fab f to put in inventory

before (B) or after (A) location l in period t, S1 ∈ {A,B}, S2 ∈
{F,S,M,T,D}

W S1,S2
f pqlt : number of jobs of product p, package q, produced in fab f to

put in inventory before (B) or after (A) location l in period t,
S1 ∈ {A,B}, S2 ∈ {F,S,M,T,D}

W S1,S2
f pqblt : number of jobs of product p, package q, bin b, produced in fab

f to put in inventory before (B) or after (A) location l in period
t, S1 ∈ {A,B}, S2 ∈ {F,S,M,T,D}

Y S1,S2
pldt : number of jobs of product p shipped between two locations l and

d in period t, S1 ∈ L, S2 ∈ L
Y S1,S2

f pldt : number of jobs of product p produced in fab f shipped between
two locations l and d in period t, S1 ∈ L, S2 ∈ L

Y S1,S2
f pqldt : number of jobs of product p, package q, produced in fab f

shipped between two locations l and d in period t, S1 ∈ L, S2 ∈ L
Y S1,S2

f pqbldt : number of jobs of product p, package q, bin b, produced in fab f
shipped between two locations l and d in period t, S1 ∈ L, S2 ∈ L

Zpqbdt : number of jobs of product p, package q, bin b, demand center d,
sold in period t

ςpqbdt : number of jobs of product p, package q, bin b, available at de-
mand center d in period t
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MA
ilt : number of machines added to machine group i, location l, and

period t
MR

ilt : number of machines removed from machine group i, location l,
and period t

ΩA
lt : binary indicator variable for adding plant l in period t

ΩR
lt : binary indicator variable for removing plant l in period t

Splt : number of wafers subcontracted of each family p to each assembly
operation l in each period t

Milt : number of machines in machine group i, location l, and time
period t

Ωlt : binary indicator variable for plant existence for location l in time
period t

The objective function and the constraints of the model can be formulated
as follows:

max ∑
t,p,q,b,d∈LD

PVpqbt Zpqbdt − ∑
t,p,q,b,d∈LD

PENpqbt
(
Dpqblt −Zpqbdt

)

− ∑
t,p,l∈LF

(
PCplt XF

plt + ICplt W AF
plt

)− ∑
t,p,l∈LF ,d∈LS

TCldt Y FS
pldt

− ∑
t,p, f∈LF ,l∈LS

ICplt W BS
f plt − ∑

t,p, f∈LF ,l∈LS

(
PCplt XS

f plt + ICplt W AS
f plt

)

− ∑
t,p, f∈LF ,l∈LS,d∈LM

TCldt Y SM
f pldt − ∑

t,p, f∈LF ,l∈LM

ICplt W BM
f plt

− ∑
t,p,q, f∈LF ,l∈LM

(
PCplt XM

f pqlt + ICplt W AM
f pqlt

)

− ∑
t,p,q, f∈LF ,l∈LM ,d∈LT

TCldt Y MT
f pqldt − ∑

t,p,q, f∈LF ,l∈LT

ICplt W BT
f pqlt

− ∑
t,p,q, f∈LF ,l∈LT

PCplt XT
f pqlt − ∑

t,p,q,b, f∈LF ,l∈LT

ICplt W AT
f pqblt

− ∑
t,p,q,b, f∈LF ,l∈LT ,d∈LD

TCldt Y T D
f pqbldt − ∑

t,p,q,b, f∈LF ,l∈LD

ICpltW
BD
f pqblt

− ∑
t,l∈L

PBCltΩA
lt − ∑

t,l∈L

POCltΩlt − ∑
t,l∈L

PRCltΩR
lt

− ∑
t,l∈L,i∈MGl

MPCiltM
A
ilt − ∑

t,l∈L,i∈MGl

MOCiltMilt − ∑
p,l∈LA,t

SCpltSplt (7.29)

subject to:

r

∑
t=1

{
(
1−Cplt

)
QpltX

F
plt +Cpl,t−1Qpl,t−1XF

pl,t−1 − ∑
d∈LS

Y FS
pldt

}
=W AF

plr ,

p ∈ FAM, l ∈ LF , r = 1, . . . ,T, (7.30)
r

∑
t=1

(
Y FS

pldt −XS
l pdt

)
=W BS

l pdr, l ∈ LF , p ∈ FAM, d ∈ LS, r = 1, . . . ,T, (7.31)
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r

∑
t=1

{
(1−Cpst)Q f pstX

S
f pst +Cps,t−1Q f ps,t−1XS

f ps,t−1 − ∑
d∈LM

Y SM
f psdt

}
=W AS

f psr,

f ∈ LF , p ∈ FAM, s ∈ LS, r = 1, . . . ,T, (7.32)

r

∑
t=1

{
∑

l∈LS

Y SM
f plat − ∑

q∈PKGp

CLSa

GpqWLS f
XM

f pqat

}
=W BM

f par,

p ∈ FAM, a ∈ LM, f ∈ LF , r = 1, . . . ,T, (7.33)

r

∑
t=1

{
(1−Cpqat)Q f pqatX

M
f pqat +Cpqa,t−1Q f pqa,t−1XM

f pqa,t−1 − ∑
d∈LT

Y MT
f pqadt

}

= W AM
f pqar, f ∈ LF , p ∈ FAM, q ∈ PKGp, a ∈ LM, r = 1, . . . ,T, (7.34)

r

∑
t=1

{
∑

l∈LM

Y MT
f pqldt −XT

f pqt

}
=W BT

f pqdr,

f ∈ LF , p ∈ FAM, q ∈ PKGp, d ∈ LT , r = 1, . . . ,T, (7.35)

r

∑
t=1

{
(1−Cqlt)Q f pqbltX

T
f pqt +Q f pqbl,t−1Cql,t−1XT

f pq,t−1 − ∑
d∈LD

Y T D
f pqbldt

}

=W AT
f pqblr, f ∈ LF , p ∈ FAM, q ∈ PKGp, b ∈ BINpq, l ∈ LT , r = 1, . . . ,T,

(7.36)

r

∑
t=1

{
∑

l∈LT

Y T D
f pqbldt − ςpqbdt

}
=W BD

f pqbdr,

f ∈ LF , p ∈ FAM, q ∈ PKGp, b ∈ BINpq, d ∈ LD, r = 1, . . . ,T, (7.37)

∑
b̃∈BETb

ςpqb̃dt − ∑
b̃∈BETb

Zpqb̃dt ≥ 0,

p ∈ FAM, q ∈ PKGp, b ∈ BINpq, d ∈ LD, t = 1, . . . ,T, (7.38)

Zpqbdt ≤ Dpqbdt , p ∈ FAM, q ∈ PKGp, b ∈ BINpq, d ∈ LD, t = 1, . . . ,T, (7.39)

∑
p∈FAM

{
Tipl

(
(1−Cplt)X

F
plt +Cpl,t−1XF

pl,t−1

)}≤ αilMilt(TPL− Sil),

l ∈ LF , i ∈ MGl , t = 1, . . . ,T, (7.40)

NΩlt ≥ XF
plt , p ∈ FAM, l ∈ LF , t = 1, . . . ,T, (7.41)

Ωlt =
max(t−LBTl ,0)

∑
r=1

ΩA
l,r+LBTl

−
t

∑
r=1

ΩR
lr, t = 1, . . . ,T, l ∈ L, (7.42)

Milt =
t

∑
r=1

(MA
ilr −MR

ilr)+mil, i ∈ MGl , l ∈ L, t = 1, . . . ,T, (7.43)

Milt ≤ MAXS
il , i ∈ MGl , l ∈ L, t = 1, . . . ,T, (7.44)

∑
i∈MGl

Milt ≤ MAXT
l , l ∈ L, t = 1, . . . ,T, (7.45)
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XS1
plt ≥ 0,XS1

f plt ≥ 0,XM
f pqlt ≥ 0,WS1,S2

plt ≥ 0,W S1,S2
f plt ≥ 0,W S1,S2

f pqlt ≥ 0,W S1,S2
f pqblt ≥ 0,

Y S1,S2
pldt ≥ 0,Y S1,S2

f pldt ≥ 0,Y S1,S2
f pqldt ≥ 0,Y S1,S2

f pqbldt ≥ 0,Zpqbdt ≥ 0,ςpqbdt ≥ 0,Splt ≥ 0,

f ∈ LF , l ∈ L, t = 1, . . . ,T, p ∈ FAM, q ∈ PKGp, b ∈ BINpq, (7.46)

Milt ∈ IN, MA
ilt ∈ IN, MR

ilt ∈ IN, t = 1, . . . ,T, l ∈ L, i ∈ MGl , (7.47)

Ωlt ,ΩA
lt ,Ω

R
lt ∈ {0,1}, t = 1, . . . ,T, l ∈ L. (7.48)

The objective function (7.29) includes revenue generated from selling pro-
ducts, the costs of not meeting the demand, the production costs, and the
costs for building and operating or removing facilities and machines. The first
line of objective function (7.29) represents the revenue generated by meeting
demand and the penalty for not meeting the demand. The second line in-
dicates the wafer fab production costs, inventory carrying costs for finished
wafers, and the costs for transporting wafers between the wafer fab and sort
sites. The third line is related to the inventory carrying costs before sort,
the products costs for sort, and the inventory carrying cost before assembly.
The fourth through eighth lines represent the costs associated with the as-
sembly and test operations, the transportation between these facilities, the
transportation costs to the demand centers, and the inventory carrying costs
at each of these facilities. The ninth line indicates the costs for building fa-
cilities, operating the facilities, and closing facilities, and the first two terms
of the tenth line represent the costs for purchasing machines and operating
them. Finally, the last term in the last line of expression (7.29) represents the
costs for subcontracting the fabrication of wafers, but does not include any
costs for establishing subcontract relationships.

The model contains network flow constraints, capacity constraints, pro-
duct substitution constraints, demand constraints, production suppressing
constraints, facility counting constraints, machine counting constraints, and
constraints on the number of machines that can be purchased. The network
flow constraints (7.30)–(7.37) enforce the material flow conservation, i.e., total
inflow is equal to total outflow. The even-numbered network flow constraints
deal with the production of products in a facility and the shipment of products
to the next facility, while the odd-numbered network flow constraints deal
with the balance of flow between the inflow of materials into a facility and
the amount of products started for production.

Constraints (7.38) determine which products will be downgraded in order
to meet demand, and the demand by product constraints are given by in-
equalities (7.39). Wafer fabrication is limited by constraints (7.40), and while
they are not shown here, there are similar constraints sets for sort, assembly,
and test.

In order to prevent production in a non-existent facility, constraints (7.41)
are needed for fab production with similar constraints sets (not shown) for
sort, assembly, and test. Constraints (7.42) keep track of the facilities that



228 7 Production Planning Approaches

are built and shutdown. In a similar way, constraints (7.43) keep track of the
number of machines purchased and sold. Constraints (7.44) and (7.45) limit
the number of machines in each machine group and place a limit on the total
number of machines in a facility, respectively. Finally, constraints (7.46)–
(7.48) are nonnegativity and integer restrictions for the decision variables.

Next, we discuss some computational results from Stray et al. [293]. We
present a break-even analysis for a situation where demand ranges from very
low to very high. Very low demand is related to a situation where the produc-
tion facilities are running with substantial excess capacity. In the very high
demand case, the production facilities are running with too little capacity.
In addition, the amount of subcontracting is limited. Practically, this means
setting the parameter demand level Dpqblt to an even level across all periods
and then solving the problem. The solution is then analyzed, and the number
of machines bought, wafers subcontracted, and what facilities were built are
noted. The model is rerun with a different demand level, and the same char-
acteristics are noted. After running enough problem instances with different
demand levels, curves are generated and examined to see what the demand
level is that makes the model go from current capacity to subcontracting,
from subcontracting to buying new machines, and from buying machines to
buying entire wafer fabs, assembly facilities, and test facilities. The network
for this analysis is shown in Fig. 7.1.
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Center
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Demand
Center
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tractor

Direction of flow

Existing
Fab

Figure 7.1: Example network

In this scenario, one wafer fab is already up and running, together with one
sort, one assembly, and one test facility, and five demand centers. The capacity
in this model is balanced so that the maximum capacity of each individual
facility matches the maximum capacity of a single facility, preceding it in
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the manufacturing supply chain. One sort facility can thus handle the output
from one wafer fab, and one assembly facility can handle the output from a
single sort facility.

There is also one foundry available with limited capacity. The product
from the foundry is ready for the assembly operation. The price of wafers
from the foundry is higher than the cost of producing them in-house as long
as existing capacity is utilized. However, if a wafer fab has to be built, the
cost per unit will increase. When the costs are high enough, subcontracting
becomes an interesting option. All existing and potential wafer fabs have the
same maximum capacity per period. The maximum capacity is defined as
the capacity of a facility when the allowed maximum number of machines
has been installed. Demand is varied evenly over the five demand centers.

There are two product families in the model, each divided into two packa-
ges. In the binning process, two different qualities result from each package.
Wafer fabs are considered to have two bottleneck machine groups, while sort,
assembly, and test have one each. The planning problem is NP-hard, because
it contains knapsack- and facility location problem-type subproblems. There-
fore, we will allow feasible solutions that are provably within 5% of optimum.
Figure 7.2 shows the obtained solutions for 20 different demand settings, var-
ied along the x-axis, with subcontracting of wafers limited. For each demand
scenario, the MIP was run using AMPL and CPLEX.
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Figure 7.2: Optimal production solutions with limited subcontracting

In this analysis, a wafer fab is built at five hundred twenty million chips,
two hundred million more than the maximum capacity of a wafer fab that is
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three hundred twenty million chips. After the wafer fab is built, foundry pro-
duction goes down and stays down comfortably under the allowed maximum.
The reason why foundry production is not zero is that it covers for the pro-
duction capacity that is lost during the building of the wafer fab. The dip in
in-house production and increase in subcontracting at the six hundred eighty
million chips demand scenario can only be explained by the 5% allowed MIP
gap, i.e., accepting the solution even though it is not optimal. The solution
at six hundred forty million chips consisted of shutting down one of the wafer
fabs in the last time period, replacing its capacity with subcontracting, saving
the operation costs for the facility and its machines, and spending the money
on the subcontracted wafers.

Rastogi et al. [258] present a stochastic version of the enterprise model of
Stray et al. [293] where the total expected profit is maximized when product
demand is uncertain. A two-stage, multiperiod stochastic MIP with recourse
was developed to provide solutions that reduce the overall risk in planning
(cf. Sect. 3.2.4). The first stage decisions include purchasing of machines at
various production facilities, outsourcing production, or even construction
of a new production facility depending upon the demand. The second stage
(recourse) actions include increasing the internal capacity by purchasing ma-
chines at a premium as well as external capacity by subcontracting and can-
cellation of contracts for outsourcing made in the first stage.

The model provides information regarding the trade-offs between risk and
expected short- and long-term returns. It is coded in AMPL and solved using
CPLEX. When the uncertainty in demand increases, a more conservative
approach is adopted, and the model displays an inherent tendency of no
commitment, i.e., the capacity increment is negligible.

In addition to the uncertainty in demand, the effect of correlation between
the demands of two products is studied. It is evident from the analysis, and
also as stated by Simchi-Levi et al. [283], that positive correlation between the
products, for example, increasing market size, involves higher risk compared
to negative, for example, introduction of new products, or no correlation.

The usefulness of the model compared to the alternatives available was
evaluated. The model was compared to the expected value model of Stray et
al. [293] and to the perfect information case, which revealed that as the un-
certainty in demand increases, the model improves its performance over the
expected value model. However, the gap between the stochastic solution and
perfect information solution also increases with the increment in variability
of demand. By increasing the number of scenarios to map the uncertainty of
demand, the results show that the efficiency of stochastic solutions increases.
Adding uncertainty to the deterministic version of the model with multiple
scenarios yielded more realistic and robust results, and analysis on correla-
tion between multiple product demands resulted in unintuitive decisions for
strategic make/buy problems.
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7.5 Modeling of Load-Dependent Cycle Times

CT is load-dependent. It increases nonlinearly with resource utilization as
known from queueing theory. This causes some problems in model formula-
tions for production planning because CT information serves as a parameter
of the models. At the same time, production planning approaches determine
the load of the BS by determining release quantities. In this section, we dis-
cuss several methods to tackle this conflict. We study CT-TP curves, iterative
simulation schemes, and finally clearing functions. For a detailed review of
production planning models with load-dependent CT in manufacturing, we
refer to Pahl et al. [226].

7.5.1 Cycle Time Throughput Curves

This section is an abridged version of Ankenman et al. [8]. CT-TP curves
are often employed as decision-making tools in manufacturing settings (cf.
Brown et al. [33]). A CT-TP curve displays the projected average CT plotted
against TP rate, or start rate. These curves are useful for planning at both
the strategic and tactical levels.

Decisions regarding the impact on CT of a 2% increase in start rate can be
widely different depending on the shape of the curve and the distance from
the knee. For example, if a wafer fab has a curve as illustrated in Fig. 7.3 and
is operating at the level of 22,000 wafer starts per month, it will experience
only a minor change in average CT by ramping up an additional 500 wafer
starts.
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Figure 7.3: Sample CT-TP curve

Alternatively, if the wafer fab is operating on the same curve but is at
22,500 wafer starts per month, a 500-wafer start increase dramatically alters
CT. In both cases, we called for a 500-wafer start increase, yet drastically
different outcomes resulted from what seemed to be the same action. Man-
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agement therefore needs to develop CT-TP curves if they are interested in
predicting the impact of start rate changes on average CT.

Unfortunately, the simple collection and analysis of past TP history is
insufficient for curve generation. It is unlikely that an operating wafer fab
has experienced a sufficient number of changes along the same curve to al-
low creation of the curve. For example, a wafer fab seldom operates on the
flat portion of the curve where equipment utilizations are in the less than
70% range. It is also unlikely that the wafer fab has carefully ramped up
production start rates over the most rapidly changing portion of the curve,
so the estimation of the shape in this region becomes problematic. In fact,
every time the wafer fab changes its dispatching policy or adds more equip-
ment, it may not just be moving along the curve, it may in fact be shifting to
an entirely new curve. The technique of empirical CT-TP curve generation
requires the collection of large amounts of representative data. As a result,
other than for the simplest of systems, simulation is the preferred method of
data generation.

While simulation is the most common technique for generating CT-TP
curves, the methods used to select the points to simulate and the effort to
allocate to these points vary. Several different design points must be simulated
to generate a CT-TP curve. A careful selection of the design points can lead
to minimal simulation expense. Various authors have discussed methods for
generating a CT-TP curve and how to select these design points (cf. Park
et al. [230], Fowler et al. [86], and Yang et al. [325]).

Other authors have presented methods for determining an appropriate
allocation of simulation effort to the design points of the CT-TP curve being
simulated so as to obtain nearly equal absolute or relative precision (cf. Leach
et al. [153]).

The method commonly used by practitioners to generate a CT-TP curve
via simulation is to allocate an equal amount of simulation effort to each
TP rate being simulated. This situation is shown in Fig. 7.4. As TP rate
approaches capacity, the CT and the variance of CT (Var(CT)) increase.
Figure 7.4 illustrates that by equally allocating simulation effort to all design
points, yielding a CT-TP curve that is less precise as we approach capacity, a
clearly undesirable characteristic. We consider single-product CT-TP curves.
Note that when we say single product, we could be considering a CT-TP
curve of a facility that produces only one product, or we could be focusing
on one product out of many provided that the relative mix of the various
products, as defined below, remains the same at all levels of the system’s TP.

We define the following quantities:

λ := (λ1, . . . ,λK) : vector of start rates for K products
x : utilization of the bottleneck in the wafer fab, 0 < x < 1

α := (α1, . . . ,αK) : product mix vector where αk := λk/∑K
h=1 λh
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Figure 7.4: CT-TP curve using equal allocation of simulation effort

Without loss of generality, we will only consider the CT of product 1
and denote its steady-state CT as C(λ ) = C(x,α), a random variable with
unknown distribution that depends on the start rates. Notice that if we know
the processing capacity of the bottleneck station, then specifying (x,α) is
equivalent to specifying λ . We will drop the dependence on α in the single-
product case. For the CT random variable to have a limiting distribution
steady state, among other things, the system logic and driving inputs must
not be changing over time. Generically, let

cr(λ ) = cr(x,α) := E(Cr(x,α)), r ∈ IN, r ≥ 1 (7.49)

be noncentral moments of the steady-state CT; we drop the subscript r when
we refer to the mean, i.e., first moment.

To estimate moments of CT, we will make one or more replications of
a typically large number of individual product CT values. Let Ci j(x,α) be
the jth observed CT from the ith replication for i = 1, . . . ,m(x,α) and j =
1, . . . , l(x,α). The quantity m(x,α) is the number of replications for given x
and α, while l(x,α) denotes the length of a single simulation run for given
x and α. Our steady state assumption corresponds to requiring that Ci j(x,α)
converges in distribution to C(x,α) as j → ∞ for any i.

The most straightforward way to generate a CT-TP curve via simulation is
to select a fine grid of TP values, say 0< x1 < · · ·< xd < 1, and run simulation
experiments at each one to estimate cr(x). We could, equivalently, select a grid
of release rates λ that correspond to TP in a steady state. However, later
when we fit CT-TP curves to the data, there are a number of advantages to
standardizing TP so that system capacity always corresponds to a TP of 1.
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Unfortunately, this approach has pitfalls. First, it requires a large number
of simulation runs to develop a fine grid. A second repercussion of point-by-
point CT-TP curve estimation is that some sort of interpolation is needed to
estimate CT properties at TP values x that were not simulated. If the grid
points are packed closely enough, then perhaps a simple linear interpolation
is adequate. However, as mentioned earlier, exceptionally long runs may be
required at the higher levels of TP, which argues against running simulations
at a very fine grid.

In a series of papers, Kleijnen and van Beers (cf. Kleijnen and van
Beers [143] and van Beers and Kleijnen [308, 309]) describe how the inter-
polation method of Kriging can be adapted to the output of discrete-event,
stochastic simulations in general and queueing simulations in particular. In its
simplest form, Kriging estimates c(x) by a weighted average of the estimated
ACT values at the grid points x = (x1, . . . ,xd). Loosely speaking, the Kriging
estimator gives more weight to CT estimates at grid points xh,h = 1, . . . ,d
that are closer to the point x to be interpolated.

Because the Kriging approach is an interpolation method, it favors a finer
grid, i.e., more design points x, than the queueing-motivated models we de-
scribe below. Furthermore, there is no guarantee that the Kriging estimator
will exhibit known properties of the response function, for instance, that c(x)
is nondecreasing in x. However, the Kriging approach has the advantages that
it is general purpose, it will not be subject to the lack of fit inherent in a
poorly chosen meta-model, and it works largely without change for interpo-
lating higher moments than the mean. Further, Kriging extends naturally to
a multidimensional independent variable, like the product mix α.

Fowler et al. [86] investigated the use of variance reduction techniques
based on common random numbers and antithetic variates (cf. the discussion
in Sect. 3.3.1) in efficiently generating CT-TP curves that linearly interpolate
a set of (TP, CT) points. In their paper, the term efficient reflects the capabi-
lity to provide a simulation-based CT-TP curve with an acceptable precision
and accuracy by using limited available resources. The goal was to generate
CT-TP curves more economically, so the cost of analysis could be reduced,
thus allowing companies to make better manufacturing capacity management
decisions. The experimentation in their paper included simulating an M/M/1
queueing system (cf. Sect. 3.2.7) and a system with five stations in series, a
special case of a Jackson queueing network. The results showed that com-
mon random numbers were effective when there was an adequate computing
budget, but they introduce too much bias when the computing budget is not
large enough. On the other hand, the results showed that antithetic variates
were effective for small or large computing budgets.

Park et al. [230] use the D-optimality criterion (cf. Sect. 3.3.1) to choose
design points for building the CT-TP curve. Since it concerns the confidence
interval of the parameters of a model, D-optimality assumes that a model
is specified for the response curve. Park et al. [230] suggest two nonlinear
regression models, one of which is bowl shaped and is appropriate when using
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batching policies such as the full batch policy MBSF or the minimum batch
size policy MBS with a minimum greater than 1 (cf. Sect. 4.5 for a description
of these two batching policies) that increase the CT at low levels of TP.
The other model, which models the CT as a monotonically increasing function
of the TP, is used when there is no batching or a greedy batch policy is
employed. The two models are given below. Notice that both models have
the CT exploding as the TP, x, nears the capacity β2. If the TP is normalized
to the capacity, then β2 = 1. We obtain for the two models:

c(x) :=
β1x

β2 − x
−β3, (7.50)

c(x) :=
β3

x
+

β1x
β2 − x

−β4, (7.51)

where βi ∈ IR are appropriate parameters of the models. Both of these models
are generalizations of the CT-TP curve of a G/G/1 queue.

The experimental design for fitting these models is a selection of TP values
at which exhaustive simulations are conducted and the steady state ACT
value is recorded. Nonlinear regression is used to estimate the parameters,
and thus the linear approximation to the variance/covariance matrix is used
to approximate the D-criterion. The candidate design points are placed at
regular intervals from zero TP to one, where one represents full capacity.
The experimental design procedure recommended is a sequential procedure
that starts with the minimum number of design points that are required to
support the model, i.e., three in the case of model (7.50) and four in the case
of model (7.51). The D-criterion can be expressed as a function of the location
of the design points. The initial points are selected as the set of three or four
in the case of model (7.51) candidate points that maximize the D-criterion.
All the other candidate points are then ranked according to the D-criterion for
entry into the design if needed. After simulations are conducted at the initial
points, the model parameters are estimated. Each additional candidate point
is added sequentially in the predefined order until the parameter estimates
no longer change by an appreciable amount, i.e., 1% was used as a stopping
criterion. This method was validated through construction of a CT-TP curve
for a wafer fab.

Another approach to building CT-TP curves was proposed by Cheng and
Kleijnen [46], hereafter called the CK approach, where they generalized the
CT-TP curve of the M/M/1 curve as shown below:

c(x) := f (x)
t

∑
l=0

βlx
l + ε(x) = ∑t

l=0 βlxl

1− x
+ ε(x), (7.52)

where f (x) := 1/(1− x) and it is assumed that TP, represented by variable x,
is scaled from zero to one. The quantity ε(x) is an error term. Again x = 1
represents full capacity. The CK approach only deals with the case of no
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batching or a greedy batch policy, and thus the model in (7.52) is a more
general form of the model (7.50) proposed by Park et al. [230].

To fit model (7.52) to the simulation data, the CK approach develops a
linear regression model since the only nonlinear part of the equation, f (x), is
known and can be dealt with through a transformation. The variance of the
error term in model (7.53) depends on x as

Var[ε(x)] = [h(x)σ ]2, (7.53)

where h(x) is assumed known from asymptotic theory or other considerations.
The design of the experiment consists of the location of the design points

x = (x1, . . . ,xm) and the fraction of a total of N replications assigned to those
points π := (π1, . . . ,πm). The design is constructed to minimize a criterion
called PM, which is a scaled version of the weighted-average variance of the
estimated expected response over the TP range of interest.

The CK procedure for fitting the model (7.52) can be summarized as
follows. Given f (x), h(x), a maximum value of t, and a fixed budget of N
replications, find the optimal design (x,π) by minimizing PM. With the design
points x fixed, carry out simulation experiments sequentially and adjust the
allocation x. Once the total number of runs has been exhausted, use backward
selection to decide the appropriate polynomial order of model (7.52) and
obtain the fitted curve.

The CK method leaves open the question of how to specify f (x) and h(x),
which affect the design of the experiment and, more importantly, the ade-
quacy of model (7.52) to represent the true CT-TP curve. When these two
functions are known, CK is highly effective and efficient, and works within a
fixed budget. However, for complicated manufacturing systems, there is not
likely to be sufficient information to infer such characteristics. In other words,
obtaining good choices for f (x) or h(x), although not impossible, is difficult
in practice. Further, we have strong empirical evidence from Allen [6] and
Johnson et al. [132] that the f (x) and h(x) used by the CK method can be far
from correct in realistic manufacturing simulations. Since model (7.50) used
in Park et al. [230] is a specific instance of Eq. (7.52), the same weakness can
be attributed to their method as well.

In summary, the procedures by Park et al. [230] and CK are both interes-
ting and useful methods of experimental design for fitting a model such as is
given in Eq. (7.52), but there may arise cases in practice where these models
are not sufficiently accurate to produce useful CT-TP curves.

A precision-driven design of experiment strategy was proposed in Yang
et al. [325] to sequentially build up simulation experiments for the efficient
generation of CT-TP curves. It allows the user to specify a precision level and
is able to provide a fitted curve with desired precision by running simulation.
We summarize the method in the remainder of this section.

The estimation of the CT-TP curve is based on the two statistical regres-
sion models (7.54) and (7.55), the forms of which are both motivated by heavy
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traffic queueing analysis and supported by extensive investigation of realistic
manufacturing systems. One is called the expected CT (ECT) model:

c(x) = E[Ci(x)] =
∑t

l=0 βlxl

(1− x)p , i = 1, , . . . ,m(x), (7.54)

that characterizes the relationship between the expected CT and normalized
TP x over a range of interest [xL,xU ]. Unknown parameters are the polynomial
coefficients β , polynomial order t, and the exponent p. As explained earlier,
the sample mean CT Ci(x) obtained from the ith simulation replication per-
formed at x will be used as the data points to which the CT-TP models are
fit. The variance of Ci(x) depends on x and is represented by the following
variance model:

Var[Ci(x)] =
σ2

(1− x)2q . (7.55)

Both σ2 and q are unknown parameters. With the sample mean CT data
{Ci(x), i = 1, . . . ,m(x)} at different values of x, the sample variance of Ci(x)
can also be estimated over x, from which the variance model (7.55) can be
fitted. With the estimated parameter q̂, transforming the response Ci(x) by
multiplying by (1−x)q will yield a constant variance and result in a standard
nonlinear regression model:

c(x)(1− x)q = E[Ci(x)(1− x)q] = (1− x)q−p
t

∑
l=0

βlx
l = (1− x)r

t

∑
l=0

βlx
l , (7.56)

where β , t, and the exponent r are unknown parameters. Thus, given a
{Ci(x), i = 1, . . . ,m(x)} dataset, the model fitting is performed in two steps:

1. Fit the variance model (7.55) and obtain the q estimate.
2. Use the estimated parameter q̂ to stabilize the variance for the original

observations Ci(x) and then fit model (7.54).

The estimators of the ECT model (7.54) are obtained indirectly by noting
that the coefficients β in model (7.54) coincide with those in (7.56), and p is
estimated by the difference between the q and r estimates.

The goal is to obtain a precisely estimated CT-TP curve that helps manu-
facturers decide at what TP they should run the system. Thus, Yang et
al. [325] evaluate the goodness of the fitting by the relative error achieved
on the ECT response estimators. Since the curve fitting is based on the non-
linear regression performed on models (7.55) and (7.56), variance estimates
can be obtained on the estimated parameters in Eqs. (7.55) and (7.56). Since
model (7.54) is derived indirectly from Eqs. (7.55) and (7.56), a conservative
variance estimate can be inferred for ĉ(x), the ECT predicted at x under some
empirical approximation (see Yang et al. [325]). Yang et al. [325] let the user
specify a target precision, say γ %, which is defined as the relative error on
the ECT estimator:
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γ % :=

√
Var[ĉ(x)]
ĉ(x)

. (7.57)

Once fitted curves have been obtained, the relative error on the ECT estimate
ĉ(x) can be approximated for any TP x over [xL,xU ]. The user can choose
to check the precision achieved at a TP level of particular interest or at a
number of points in [xL,xU ] before they declare that a fitted curve with desired
precision has been generated.

For the efficient estimation of the CT-TP models presented above, design
of experiments methodologies is developed to collect simulation data sequen-
tially. The experimental design consists of the location of design points, the
TP levels at which simulations will be executed, the allocation of compu-
tational effort, and the number of simulation replications assigned to each
design point. The best choice of experimental design depends on the true
ECT and variance curves, which are unknown at the stage of designing experi-
ments. In light of this, Yang et al. [325] approach the design of experiments
problem in a sequential manner. The model curves are estimated ever more
precisely as more simulation data are obtained, and further experimentation
is guided by the current best estimate of the models. This design and mo-
deling process is continued until the prespecified precision γ % is achieved on
the ECT response estimator.

To demonstrate the effectiveness of the Yan procedure, Yang et al. [325]
applied it on a number of systems to generate their corresponding CT-TP
curves. The systems explored included analytically tractable queueing mo-
dels and realistic semiconductor manufacturing systems. For simple queueing
models such as M/M/1/FIFO, M/M/1/SPT, and M/M/1/LPT, the true CT-
TP curves can be derived analytically, and hence the quality of the simulation-
based model estimation can be evaluated easily. The real wafer fab considered
is provided by the MASM Lab testbed (see Fowler and Robinson [83]). Since
the true underlying curve is unknown in this case, nearly true ECT estimates
were obtained by running simulations until the standard error of the expected
CT estimates were essentially zero. These estimates provide a benchmark to
which the ECT estimates obtained from the Yan method are compared. All
the computational experiments show that the Yan method is able to genera-
te high-quality CT-TP curves with desired precision. Comparisons were also
performed that show that the Yan approach can be more efficient than the
procedure proposed by Cheng and Kleijnen [46].

The focus of this section has been on CT as a function of TP, but product
mix (PM) can also affect CTs even if the overall system TP is unchanged.
However, fitting CT-TH-PM surfaces via simulation is a much more chal-
lenging problem and is beyond the scope of this section. More details of this
problem are presented in Yang et al. [326].

Note that considerable simulation effort is necessary to determine mea-
ningful CT-TP curves. These curves are valid for all possible TP situations
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however, it is not evident to see how these curves can be used in some produc-
tion planning approaches. In the next two sections, we will describe two more
methods. The first method, iterative simulation, tries to determine CT values
that are appropriate for certain released quantities. The second method, the
clearing function approach, is similar to the CT-TP curve approach; how-
ever, it tries to find the relationship between load and CT and also covers the
incorporation of the clearing function into production planning approaches.

7.5.2 Iterative Simulation

The first iterative procedure for production planning in semiconductor man-
ufacturing was proposed by Hung and Leachman [120]. An LP model is for-
mulated that requires estimated lead times, i.e., cycle times, Fpl for a job
of product p to reach process step l after being released into the wafer fab.
It is shown by Irdem et al. [124] that an unambiguous convergence of the
approach of Hung and Leachman is hard to achieve. This is true even for
situations where the demand is constant for all products over the planning
horizon. Because of the limitations of the Hung and Leachman approach, we
discuss a second formulation that when used within an iterative simulation
setting shows a consistent convergence.

We describe an LP model for production planning that is due to Kim and
Kim [139]. Recently, this formulation is extended to a production planning
situation in semiconductor manufacturing by Irdem et al. [124]. The actual
workload profiles on each machine over the planning periods are taken into
account. Therefore, the effective loading ratio epk(g,t) is introduced in [139].
This quantity is defined as the proportion of the start quantity of product p
released in a period g ≤ t that contributes to the workload at machine group
k in period t. Furthermore, the effective utilization ukt of machine group k in
period t is taken into account. The quantity ukt is defined as the proportion
of the total capacity of machine group k that is available to process the start
quantities during period t. The adjusted capacity of machine group k in period
t is obtained by simply multiplying the capacity Ckt by ukt . It is clear that
the effective loading ratios and the effective utilization can be used to model
load-dependent cycle times.

Following Irdem et al. [124], the corresponding LP model is formulated.
The following indices and index sets are used:

t = 1, . . . ,T : period index
p : product index
P : set of all products

k = 1, . . . ,K : machine group index
l = 1, . . . , lp : process step index for wafers of wafer type p
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The parameters used within the model are:

aplkt : average machine hours for process step l of a single wafer of wafer
type p on machine group k processed in period t

Ckt : hours of machine group k available in period t
rpt : unit revenue from product p in period t
cpt : unit incremental production cost of product p in period t
hpt : unit inventory holding cost for product p in period t
bpt : unit backlog cost for product p in period t
dpt : demand for wafer type p in period t

epk(g,t) : effective loading ratio of product p on machine group k in period t
due to starts in period g

epM(g,t) : effective loading ratio of product p on the last processing machine
in period t because of starts in period g

ukt : effective utilization of machine group k in period t
Bp0 : initial backlog for wafer type p
Ip0 : initial inventory for wafer type p

The following decision variables are used in the model:

Xpt : release quantity for wafers of type p in period t
Ypt : output quantity for wafers of type p in period t
Ipt : units of product p in inventory of finished goods at the end of

period t
Bpt : units of product p backlogged at the end of period t

The production planning model can be formulated as follows:

max ∑
p∈P

T

∑
t=1

(rptYpt − cptXpt − hptIpt − bptBpt) (7.58)

subject to:

∑
p∈P

t

∑
g=1

lp

∑
l=1

epk(g,t)aplktXpg ≤ uktCkt , t = 1, . . . ,T, k = 1, . . . ,K, (7.59)

Ypt + Ip,t−1−Bp,t−1 +Bpt = dpt + Ipt , p ∈ P, t = 1, . . . ,T, (7.60)

t

∑
g=1

epM(g,t)Xpg = Ypt , p ∈ P, t = 1, . . . ,T, (7.61)

Xpt ≥ 0, Ipt ≥ 0,Bpt ≥ 0, t = 1, . . . ,T, p ∈ P. (7.62)

The objective function (7.58) is related to profit. The objective function value
is the difference of revenue and the sum of production, inventory holding, and
backlog costs. Constraints (7.59) model the resource capacity, whereas con-
straints (7.60) are material conservation equations. The release-output rela-
tionship is expressed by constraints (7.61). Finally, nonnegativity conditions
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for decision variables are taken into account by constraints (7.62). As typical
in production planning models, we do not use integer variables.

The iterative procedure proposed by Kim and Kim [139] can be formulated
as follows (cf. Sect. 3.2.8 for the general principle of iterative simulation). Note
that we use the term KK procedure as an abbreviation.

KK Procedure

1. Initialize the counter for the current iteration curr := 1 and select the
maximum number of iterations itermax. Calculate initial effective loading

ratios epk(g,t),curr := e(0)pk(g,t) and machine utilizations ukt,curr := u(0)kt using a

steady state simulation. The period demands are used as release quanti-
ties within the simulation.

2. Solve the LP (7.58)–(7.62) using epk(g,t),curr and ukt,curr to determine release
quantities Xpt,curr and wafer output quantities Ypt,curr.

3. Use a prescribed number of independent replications of a simulation run
to obtain updates for epk(g,t),curr and ukt,curr, taking the release quantities
Xpt,curr of step 2 into account. Take the average for epk(g,t) and ukt over
all simulation runs to determine epk(g,t),curr+1 and ukt,curr+1. Collect also
output quantities SYpt,curr, where S indicates that these quantities are
determined from the simulation.

4. If curr < itermax, then set curr := curr+1 and go to step 2. Otherwise, the
iterative scheme terminates.

The mean absolute deviation between Ypt,curr and SYpt,curr is used to measure
convergence of the KK iterative procedure. A relatively small number of
iterations is generally enough. It is shown in [124] by extensive simulation
experiments that the KK procedure shows a consistent convergence behavior.
Hence, it seems that this procedure has some potential for being applied in
practice.

7.5.3 Clearing Functions

Clearing functions are used to model the relationship between the expected
output of a manufacturing system and the WIP inventory. These functions
have the advantage that they are able to capture the nonlinear relationship
between resource utilization, i.e., load, and CT.

Clearing functions were proposed for the first time by Graves [108]. The
following linear function f is used in [108]:

Yt = cWt , (7.63)

where c > 0 is a constant, called the proportional factor, and Yt is the output
at the end of period t. Finally, Wt is a measure for the WIP at the beginning
of period t. An infinite capacity assumption is a consequence of this model,
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because the manufacturing system is assumed to be able to complete the
amount cWt even when Wt is very large. The major drawback of this model is
that the planned CT is fixed based on Little’s law (cf. Eq. (3.21) in Sect. 3.2.7),
even when Wt is changing. Therefore, CT values are not appropriate taken
into account in model formulations that use this clearing function.

Later, nonlinear clearing functions were proposed that take the finite ca-
pacity of the BS into account. The general idea of a clearing function f is
introducing a clearing factor c(W ) to obtain a clearing function f of the form:

f (W ) := c(W )W, W ≥ 0. (7.64)

The clearing factor is a nonlinear function of the WIP W . Clearly, we have
f (0) = 0 for each clearing function of this form.

Kamarkar [136] proposed the following clearing function:

f (W ) :=
C1W

C2 +W
, W ≥ 0, (7.65)

where C1 and C2 are positive constants. This clearing function is a nonde-
creasing, concave function of WIP. We can see easily that C1 is the maxi-
mal possible output that is obtained for W → ∞. It represents the maximum
capacity. The quantity C2 is a user-specific parameter controlling the cur-
vature of the clearing function. The following clearing function is due to
Srinivasan et al. [292]:

f (W ) :=C1(1− exp−C2W ), W ≥ 0, (7.66)

where again C1 and C2 are positive constants. By considering W → ∞, we
obtain that C1 is the maximum possible output. By using the expression
expx = ∑∞

k=0 xk/k!, it is evident that the clearing function (7.66) is of the
form (7.64). Note that the two constants C1 and C2 can be determined, in
principle, by fitting the function to empirical data.

In the remainder of this section, we assume that the clearing function f
is concave and f (0) = 0 holds. Furthermore, it is a smooth function with the

property d f (W )
dW > 0, i.e., f is monotone increasing.

In the following, we want to derive an LP formulation similar to the
model (7.58)–(7.62). Therefore, we have to incorporate the clearing function
into the LP model. Following Asmundsson et al. [13], we replace the capacity
constraints (7.59) in a single-stage multi-product situation with the product
set P and T periods by

∑
p∈P

ξptYpt ≤ ft

(
∑
p∈P

ξptWpt

)
, t = 1, . . . ,T, (7.67)
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where the following notation is used:

Ypt : total production quantity of product p in period t
ξpt : amount of resource (machine time) required to produce one unit of

product p in period t
Wpt : WIP of product p in period t

ft : clearing function for period t

As stated in [13], there is no link between the mix of WIP available in the
period and the corresponding production in the capacity restriction (7.67). To
avoid this problem, the overall clearing function is decomposed. We obtain:

ξptYpt ≤ Zpt ft

(
∑
p∈P

ξptWpt

)
, p ∈ P, t = 1, . . . ,T, (7.68)

∑
p∈P

Zpt = 1, t = 1, . . . ,T, (7.69)

where the new decision variable Zpt ≥ 0 represents the allocation of the ex-
pected TP represented by the clearing function among the different products.

The capacity constraints (7.68) still have the disadvantage that ft has the
total WIP as argument and not the WIP for a specific product. To solve
this problem, it is assumed in [13] that the expected TP between products is
proportional to the mix of products represented in the WIP in period t. We
obtain

∑
p∈P

ξptWpt =
ξptWpt

Zpt
, p ∈ P, t = 1, . . . ,T. (7.70)

The quantity
ξptWpt

Zpt
can be interpreted as the extrapolated total WIP in pe-

riod t. Using Little’s law (cf. Eq. (3.21) in Sect. 3.2.7), it is shown in [13] that
this extrapolation is exact when all products have the same average CT at
the resource. The resultant capacity constraints substituting the right-hand
side of Eq. (7.70) into capacity constraints (7.68) are

ξptYpt ≤ Zpt ft

(
ξptWpt

Zpt

)
, p ∈ P, t = 1, . . . ,T, (7.71)

∑
p∈P

Zpt = 1, t = 1, . . . ,T. (7.72)

This is called the allocated clearing function (ACF) formulation. To obtain a
tractable LP formulation, we replace the partitioned clearing function (7.71)
by a set of linear constraints using outer approximations. Because f is con-
cave, it can be approximated by the convex hull of a set of linear func-
tions αcξptWpt + β c, where c = 1, . . . ,C denotes the individual straight line,
i.e., segment, in the approximation. The quantity αc denotes the slope of
the linearized clearing function for segment c, whereas β c is the intercept
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of the linearized clearing function for segment c. We use αC = 0 to model
the fact that the maximum throughput is reached. In addition, we have
αC < .. . < α2 < α1 and β 1 = 0. An individual clearing function is assigned to
each resource k = 1, . . . ,K. The capacity constraint is linear because we have

Zpt ft

(
ξptWpt

Zpt

)
= Zpt min

c

{
αc ξptWpt

Zpt
+β c

}
= min

c

{
αcξptWpt +β cZgp

}
. (7.73)

Next, we present a corresponding LP formulation following [12, 123] with
products p ∈ P and periods t = 1, . . . ,T . Setup times and consequently lot
sizing effects are not modeled. For simplicity reasons, we model only a single
stage multiproduct system; however, extensions to multistage situations are
presented in [12, 123]. The following indices and index sets are used in the
resultant LP:

t = 1, . . . ,T : period index
p : product index
P : set of all products

The parameters used in the model are:

cpt : unit production cost of product p in period t
ξpt : amount of resource (machine time) required to produce one unit of

product p in period t
hpt : unit inventory holding cost of product p in period t
bpt : unit backlog cost of product p in period t
wpt : unit WIP holding cost of product p in period t
dpt : demand for product p in period t
αc : slope of the linearized clearing function at segment c
β c : intercept of the linearized clearing function at segment c

Wp0 : initial WIP for wafer type p
Bp0 : initial backlog for wafer type p
Ip0 : initial inventory for wafer type p

The following decision variables are used within the model:

Xpt : release quantity for wafers of type p in period t
Ypt : output quantity for wafers of type p in period t
Wpt : WIP quantity for wafers of type p over period t
Ipt : units of product p in inventory of finished goods at the end of period t
Bpt : units of product p backlogged at the end of period t
Zpt : fraction of capacity that is used by product p in period t

Now, the model can be formulated as follows:

min ∑
p∈P

T

∑
t=1

{
cptYpt + hptIpt + bptBpt +wptWpt

}
(7.74)
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subject to:

Wpt =Wp,t−1 −Ypt +Xpt, p ∈ P, t = 1, . . . ,T, (7.75)

Bp,t−1 + Ipt + dpt = Ypt + Ip,t−1 +Bpt , p ∈ P, t = 1, . . . ,T, (7.76)

ξptYpt ≤ αcξptWpt +β cZpt , p ∈ P, t = 1, . . . ,T,

c = 1, . . . ,C, (7.77)

∑
p∈P

Zpt = 1, t = 1, . . . ,T, (7.78)

Xpt ≥ 0,Ypt ≥ 0,Wpt ≥ 0, Ipt ≥ 0, Bpt ≥ 0, Zpt ≥ 0 p ∈ P, t = 1, . . . ,T. (7.79)

The objective function (7.74) is based on the production, backorder,WIP, and
finished good inventory costs. Constraints (7.75) model the WIP flow. The in-
ventory balance equations are given by constraints (7.76). Constraints (7.77)
are related to capacity represented by the linearized clearing function. Con-
straints (7.78) ensure that the fractions of capacity used by a single product
sum up to one. Finally, nonnegativity conditions for decision variables are
taken into account by constraints (7.79).

Computational experiments with the linearized ACF multi-stage approach
for wafer fabs are described in [12, 123]. Job releases obtained by the
ACF formulation are smoother and lead consequently to better overall CT
performance compared to production planning approaches based on the fixed
CT assumption.

There are several ways to derive clearing functions. The first approach con-
sists in using steady-state or transient queueing models to determine clear-
ing functions analytically [13]. This approach has some limitation in complex
manufacturing systems such as wafer fabs. The second approach is estimating
clearing functions from empirical data. The empirical data can be collected
using discrete-event simulation. The overall procedure from [12, 123] can be
summarized as follows.
Estimating a clearing function (ECF)

1. Generate randomly demand realizations that correspond to different
bottleneck utilization levels.

2. Determine job releases using a production planning approach that takes
the demand realizations from step 1 as input. Alternatively, job releases
can be determined based on the demand and some simple backward cal-
culation to obtain starting times for the jobs.

3. For each release plan from step 2, perform repeated simulation runs of the
BS and BP using myopic dispatching as FIFO to determine pairs (W k

t ,Y
k

t )
for each period t and each machine group k.

4. Determine C1 for the functional forms (7.65) or (7.66) from the empirical
data from step 3. Use a nonlinear least-square fitting technique to find the
remaining parameter C2.
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5. Perform a piecewise linearization procedure, i.e., a nonlinear optimization,
to find the segments with the corresponding slopes and intercepts (cf.
Irdem [123] for details). Three segments are generally appropriate.

It is obvious that the ECF procedure is time-consuming because of the re-
peated simulation runs and because of running the different optimization
procedures.

So far, a clearing function is constructed for each resource separately. The
resulting output capacity is allocated to the different products. A different
approach is proposed by Kacar and Uzsoy [134]. A clearing function is
estimated for each product based on the release quantities and WIP lev-
els of this product and other products in a certain number of periods using
multiple regression.

In conclusion, it seems that estimating clearing functions from empirical
data is far from being a trivial task. The computational methods and the
resultant effort are similar to the case of CT-TP curves.

Overall, it seems that, from a real-world implementation point of view,
the iterative simulation approach requires the least effort among the three
methodologies discussed in this section.
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