
Chapter 9
Memetic Algorithms in Constrained
Optimization

Tapabrata Ray and Ruhul Sarker

9.1 Introduction

Memetic Algorithms (MAs) are a fairly recent breed of optimization algorithms cre-
ated through a synergetic coupling of global and local search strategies [615]. While
predecessors of MAs, i.e. Genetic Algorithms (GAs) and Evolutionary Algorithms
(EAs) have had significant success in solving a number of real life complex opti-
mization problems in the past, their performance can be greatly improved though
a hybridization with other techniques [188]. GAs or EAs hybridized with local
search strategies are commonly referred as memetic algorithms. These methods are
inspired by models of natural systems that combine the evolutionary adaptation of a
population with individual learning within the lifetimes of its members. While, the
underlying GA/EA provides the ability for exploration, the local search aids in ex-
ploitation [492]. The exploitation schemes adopted in MAs include incorporation of
heuristics, approximation algorithms, local search algorithms, specialized schemes
for recombination etc.

An excellent review of memetic algorithms has been presented by Ong, Lim and
Chen [689]. The performance of a MA is largely dependent on the correct choice
of the local search strategies (memes), identification of the sub-set undergoing local
improvements and the convergence criterion used in local search strategies. In this
chapter, first, we discuss constrained optimization and provide a brief review of us-
ing memetic algorithms in solving Constrained Optimization Problems (ConOPs).
The representations and local search approaches used in memetic algorithms in
solving different ConOPs are also described and reviewed. We also present two
case studies to demonstrate the use memetic algorithms in solving ConOPs. The
first case study is designed to solve constrained numerical optimization problems
with traditional representation while the next is designed to solve a combinatorial

Tapabrata Ray · Ruhul Sarker
School of Engineering and Information Technology, University of New South Wales at
Australian Defence Force Academy, Canberra ACT 2600, Australia
e-mail: {t.ray,r.sarker}@adfa.edu.au

F. Neri et al. (Eds.): Handbook of Memetic Algorithms, SCI 379, pp. 135–151.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

{t.ray,r.sarker}@adfa.edu.au

136 T. Ray and R. Sarker

optimization problem with an alternative representation. In the first case study, a
local search is embedded within an evolutionary algorithm to accelerate its rate of
convergence. The evolutionary algorithm unlike common EA’s preserves a set of
marginally infeasible solutions throughout the course of search in an attempt to
identify solutions to constraint optimization problems with a higher rate of conver-
gence. The above MA also adopts a conventional representation scheme.

In the true sprit of MAs, the second study of MA is designed to solve job shop
scheduling problems through intelligent representation that includes several prob-
lem specific recombination schemes to accelerate the rate of convergence. Both case
studies show the benefits of using using MAs in solving ConOPs.

9.2 Constrained Optimization

Many real-world design and decision processes require a solution to Constrained
Optimization Problems (ConOPs). In general, the ConOPs can be represented math-
ematically as follows (without loss of generality, minimization is considered here).

Minimize f (X)
Subject to gi(X)≥ 0, i = 1, . . . ,m,

h j(X) = 0, i = 1, . . . , p,

Li ≤ xi ≤Ui, i = 1,2, . . .n

(9.1)

where X = (x1, . . . ,xn) is a vector with n decision variables, f (X) is the objective
function, gi(X) is the ith inequality constraint, h j(X) is the jth equality constraint,
each xi has a lower limit Li and an upper limit Ui.

Based on the characteristics and mathematical properties, ConOPs can be of
many different types. They may contain different types of variables such as real,
integer and discrete, and may have equality and/or inequality constraints. The ob-
jective and constraint functions could be either linear or nonlinear. The problem
may have one or more objectives, and each objective could be either of maximiza-
tion or minimization. The functions may be either continuous or discontinuous, and
either unimodal or multimodal. The feasible space for such problems could be a
small fraction of the search space, the entire search space or a collection of multiple
disjoint spaces. The optimal solution may or may not lie on constraint boundaries.
A classification of optimization problems can be found in [791]. The application of
constrained optimization methods is thus wide. A few examples include: planning
(resource allocation, logistics, production planning, and scheduling), engineering
design (welded beam, pressure vessel, and VLSI chip design), medical science (op-
timization of beams for radiotherapy, DNA sequencing), and computer science (data
base design and data mining).

Researchers and practitioners use both conventional mathematical optimiza-
tion methods and more recent methods relying on computational intelligence to
solve ConOPs. One drawback of conventional optimization methods is the fact

9 Memetic Algorithms in Constrained Optimization 137

that they require specific properties (such as convexity, continuity and differentia-
bility) of the mathematical model and hence require simplifications of the prob-
lem via assumptions [792]. In addition, the choice of a method is determined by
the problem classification and sub-classification. In contrast, algorithms based on
computational intelligence are simple to implement, do not require underlying prop-
erties of the model, are amenable to parallelization and can be readily applied to a
range of problems.

An EA is one such class of method based on computational intelligence where a
population(set) of solutions are iteratively improved in an attempt to identify global
optimal solutions. However, they usually require evaluation of numerous solutions
prior to convergence resulting in higher computational times and exhibit poor con-
vergence [455]. On the other hand, local search algorithms converge quickly to a
local optimum but lack a global perspective. A combination of a population based
algorithm and a local search have resulted in a new class of algorithms referred as
MAs which capitalizes the benefits of both algorithms simultaneously. For example,
a recent study conducted by Hasan et al. [378] on a job shop scheduling problem
highlighted that better quality of solutions could be obtained using MA with re-
duced computational effort as compared to genetic algorithms. Boudia and Prins
[79] indicated that the solutions produced by memetic algorithms, for an integrated
production-distribution problem, made significant savings as compared to others.
More recently Singh et al. [816] reported the results of their infeasibility empowered
memetic algorithm on a set of CEC-2010 constrained optimization benchmarks. It
is also important to highlight that MAs are also attractive for dynamic optimization
problems where an improved rate of convergence is required along with the ability
to search for global optima. Isaacs et al. [407] have reported the performance of a
memetic algorithm on dynamic bi-objective problems highlighting the benefits over
evolutionary algorithms.

While population based methods such as EAs perform well as compared to con-
ventional methods on unconstrained optimization problems, their performance on
constrained optimization problems is not exceptionally good. Common search op-
erators of EAs (such as crossover and mutation) are blind to the constraints. As a
consequence, the candidate solutions generated by these operators may violate con-
straints [126]. Hence, mechanisms for constraint handling play an important role
on the performance of such algorithms. Over the past decade, various constraint
handling techniques have been proposed in the context of evolutionary optimization
[126, 133, 195, 597, 908]. These techniques can be grouped as: penalty functions,
special representations and operators, repair algorithms, separation of objectives and
constraints, and hybrid methods. The purpose of these methods is to find the con-
straint violations, and use such information to rank and select the individuals for
reproduction. Such methods are referred as MAs with conventional representation
and are discussed in depth in the following section.

While many MAs adopt conventional representation i.e. the solution represented
as a vector of decision variables, there are many which focus on the underlying
solution representation scheme and include specialized representation and/or re-
pair methods to deal with constraints efficiently. The details of such methods are

138 T. Ray and R. Sarker

discussed under the broad context of MAs with alternative representation. Two case
studies are carefully selected to illustrate the behavior of both these classes of MAs.

9.3 Classification of MAs

As observed in the literature, the trend of MAs used for constrained optimization
can be represented by the classification shown in Figure 9.1.

Fig. 9.1. Classification of MAs

Some examples of MAs based on the above classification are given in Table 9.1.
It is interesting to observe that MAs, with chromosome representation based on
solution vector, use penalty or repair method for dealing with constraint violation.
On the other hand, MAs, with alternative chromosome representation, use derivative
free local search method, and use either feasible individuals or repair infeasible
individuals to deal with constraints. From the review in an earlier section, it is clear
that the alternative representation is popular for solving combinatorial optimization
problems.

9.4 MAs with Conventional Representation

In this section, we will discuss optimization problem solving, using MAs, where
the complete mathematical model is available and a chromosome is represented as
a vector of decision variables.

Handoko et al. [356] developed a MA where a GA was combined with a gradient
based local search to solve nonlinear programming problems. The constraint viola-
tion was handled using three simple rules as of Deb [195] : (i) the feasible individual
is preferred over the infeasible one; (ii) for two feasible individuals, the individual
with better fitness is preferred; and (iii) for two infeasible individuals, the individ-
ual with lower constraint violation is preferred. Their experimental results indicated
that MAs outperformed conventional algorithms in terms of both quality of solution
and the rate of convergence.

9 Memetic Algorithms in Constrained Optimization 139

Table 9.1. Examples of MAs in literature

Representation (as discussed earlier)

Based on solution vector Alternative Representation

Constraint handling Constraint handling

Penalty/Repair Penalty/Repair Ensures feasibility

Gradient Handoko et al. [356]

based Singh et al. [816]

local Kelner et al. [455]

search Barkat Ullah et al. [44]

Derivative Lin and Liang [518] Hasan et al. [377, 378] Prins [734, 735]

free Barkar Ullah et al. [45] Fallahi et al. [249]

local Boudia and Prins [79] Ngueveu et al. [662]

search Park et al. [713] Mendoza et al. [579]

Marinakis & Marinaki [555]

Singh et al. [816] designed an infeasibility empowered MA for solving con-
strained optimization problems where an underlying EA was combined with a local
search (Sequential Quadratic Programming (SQP)). The constraint violation was
tackled using principles of infeasible solution embedding Singh et al. [759] and the
results were reported for the series of 18 constrained test problems as introduced in
CEC-2010 competition.

Lin and Liang [518] proposed a hybrid algorithm where a GA was combined with
an adaptive penalty method and a line search technique (Hooke and Jeeves). The
performance of the algorithm on a series of 13 well-known benchmark problems
established its robustness.

Kelner et al. [455] proposed a hybrid algorithm as a combination of a GA and
a local search strategy based on the interior point method, for solving constrained
multi-objective mathematical models. The constraints were handled using the rules
proposed by Deb [195]. The efficiency of the algorithm was demonstrated using a
number of test problems.

Barkat Ullah et al. [44] proposed an agent based memetic algorithm in which four
local search algorithms were used for adaptive learning. The algorithms included
random perturbation, neighborhood and gradient search methods. Subsequently, an-
other specialized local search method was designed to deal with equality constraints
(Barkat Ullah et al. [45]. The constraints were handled using the rules proposed by
Deb [195]. Although the algorithm identified high quality solutions on the set of
13 benchmarks, the computational time was a bit longer than state-of-the-art algo-
rithms (Runarsson and Yao [782]) as the underlying lattice-like environment and
orthogonal crossovers consumed a fair amount of time.

Liu et al. [527] developed a memetic co-evolutionary differential evolution al-
gorithm where the population was divided into two sub-populations. The purpose
of one sub-population is to minimize the fitness function, and the other is to min-
imize the constraint violation. The optimization was achieved through interactions

140 T. Ray and R. Sarker

between the two sub-populations. No penalty coefficient was used in the method
while a Gaussian random number was used to modify the individuals when the best
solution remained unchanged over several generations. The results indicate the al-
gorithm being computationally inexpensive in terms of memory requirements and
CPU times and efficient when compared with existing state of the art algorithms.

While most of the applications reported above are tested on mathematical bench-
marks, several practical applications have also adopted conventional representation.
Boudia and Prins [79], Park et al. [713], and Berretta and Rodrigues [61] dealt with
three different practical problems and in all studies chromosomes were designed
using conventional representation. Boudia and Prins [79] considered the problem
of cost minimization of a production-distribution system. The moves (local search)
used were 2-OPT, relocate a customer, and swap between two customers. A re-
pair mechanism was also applied for constraint satisfaction. The algorithm reported
significant savings as compared to two other existing methods. Park et al. [713]
combined a GA with a tunnel-based dynamic programming scheme (as a local
search) to solve highly constrained non-linear discrete dynamic optimization prob-
lems arising from long-term planning. The infeasible solutions were repaired by
regenerating partial characters. The algorithm successfully solved reasonable sized
practical problems which cannot be solved using conventional approaches. A multi-
stage capacitated lot-sizing problem was solved by the memetic algorithm proposed
by Berretta and Rodrigues [61] using heuristics as local search coupled with usual
crossover and mutation operators. The results using the above method were better
than those generated using existing heuristics.

9.5 MAs with Alternative Representations

While the above section highlighted a number of successful MAs that have been
designed to solve constrained optimization problems using conventional represen-
tation schemes, there are also a number of MAs that have been designed to solve
problems using alternative representation schemes. Combinatorial problems require
many integer (mainly binary) variables and logical constraints to represent them
mathematically. Hence, a chromosome design based on the decision variables of
the mathematical model as a vector becomes too long. Just to give an idea, let us
consider a single variable piecewise linear function or a continuous nonlinear func-
tion that can be approximated by a number of piecewise linear functions. To express
these functions mathematically for n segments, we need (n+1) real variables, (n-1)
binary variables and (n+1) logical constraints. So, 2n variables in the chromosome
and additional (n + 1) constraints are required to represent the function of a single
variable. In alternative chromosome design, one can use just one variable as illus-
trated in Ray and Sarker [758]. The applications of alternative representations in
MAs are briefly reviewed below.

Prins [734] developed a memetic algorithm for solving vehicle routing prob-
lems (VRPs) which outperformed most Tabu Search (TS) heuristics (best known
algorithms for VRPs at that time) on a number of test instances. The solution was

9 Memetic Algorithms in Constrained Optimization 141

represented using a TSP-like permutation chromosome, without trip delimiters, and
local search procedures (like moving or swapping some nodes) were used in lieu
of mutation for search. Later, Prins [735] proposed two more memetic algorithms
for heterogeneous fleet vehicle routing problems (HFVRPs) that are based on chro-
mosome encoded as giant tours, without trip delimiters. Such chromosomes do not
directly represent the decision variables of the corresponding mathematical model
of the problem. In both of the above studies, Prins applied an optimal evaluation
procedure that splits the tours into feasible trips and assign vehicles to them. As a
result, no repair mechanism or penalty method was required. The perturbation was
achieved through the relocation of one customer, the exchange of two customers,
and 2-OPT moves operated on one or two selected routes. In order to maintain di-
versity, a distance measure in the solution space was used. The algorithm is one of
the most successful algorithms for vehicle fleet mix problem with both fixed and
variable costs (VFMP-FV) that has been able to discover six new best solutions to
benchmark problems.

El Fallahi et al. [249] and Ngueveu et al. [662] developed a memetic algorithm
for multi-compartment vehicle routing problems (MC-VRPs) and cumulative ve-
hicle routing problems (CCVRPs) respectively. In these algorithms, the chromo-
some representation and evaluation procedure are similar to Prins [734]. However,
the moves (local search) in the first algorithm are based on 2-OPT, relocate and I-
interchange and the second include 2-OPT, relocation of one customer and exchange
of two customers. Mendoza et al. [579] proposed a memetic algorithm for a variant
of MC-VRPs with a different representation known as the genetic vehicle repre-
sentation (GVR). In GVR, each permutation contains an ordered set of customers
representing a route. This representation allows the straightforward application of
the selected crossover, mutation and local search operators designed to work on in-
dependent routes. The authors used relocate and 2-OPT as the local search schemes.

Marinakis and Marinaki [555] proposed a memetic algorithm for the solution of
VRPs. The MA makes use of a GA framework with an expanding neighborhood
search. Although, significantly better solutions were reported on two sets of bench-
mark instances, there is no comparison on computational time.

Hasan et al. [377, 378] developed a memetic algorithm for solving job-shop
scheduling problems. They used job pair-relation based genotype representation,
priority rules as local search, and a repair mechanism for changing the infeasible
individuals into feasible. It is generally accepted that the time taken per generation
of MA would be higher than that of GA. However Hasan et al. [378] proved that
MA, as compared to GA, not only improves the quality of solutions but also reduces
the overall computational time. The proposed MA improved the average of the best
solutions over GA by 2.623%, while reducing the computational time by 40.57%
on average per problem. It is also important to take note that these are based on 40
well-known series of benchmark problems.

142 T. Ray and R. Sarker

9.6 Numerical Case Studies

Two case studies are discussed in depth in the following sub-sections.

9.6.1 Case Study 1: Infeasibility Empowered Memetic Algorithm
for Constrained Optimization Problems: MA with
Conventional Representation

In this section we present an Infeasibility Empowered Memetic Algorithm (IEMA)
which is a combination of Infeasibility Driven Evolutionary Algorithm(IDEA) and
a local search based on Sequential Quadratic Program (SQP). IDEA is a derived
variant of EAs in which a small proportion of marginally infeasible solutions are
preserved to accelerate the rate of convergence. While most EAs rank feasible so-
lutions above infeasible solutions, IDEA ranks solutions based on the original ob-
jectives along with additional objective representing constraint violation measure.
In addition, “good” infeasible solutions are ranked higher than the feasible solu-
tions, and thereby the search proceeds through both feasible and infeasible regions,
resulting in greater rate of convergence to optimal solutions. The studies reported
in [759, 817] indicate that IDEA has better rate of convergence over conventional
EAs for a number of constrained single and multi-objective optimization problems.
The following subsections provide the background of IDEA and necessary details
of IEMA.

9.6.1.1 Infeasibility Driven Evolutionary Algorithm (IDEA)

A generalized single-objective optimization problem can be formulated as shown
in (9.1). It is a usual practice to convert the equality constraints to inequality con-
straints using a small tolerance (i.e. h(x) = 0 is converted to |h(x)| ≤ ε). Hence, the
discussion presented here is with regards to presence of inequality constraints only.

To effectively search the design space (including the feasible and the infeasible
regions near constraint boundaries), the original single objective constrained opti-
mization problem is reformulated as bi-objective unconstrained optimization prob-
lem as shown in (9.2).

Minimize f ′1(x) = f1(x)
f ′2(x) = violation measure

(9.2)

The additional objective represents a measure of constraint violation, which is re-
ferred to as “violation measure”. It is based on the amount of relative constraint
violations among the population members. Each solution in the population is as-
signed m ranks, corresponding to each m constraints. The ranks are calculated as
follows. To get the ranks corresponding to ith constraint, all the solutions are sorted
based on the constraint violation value of ith constraint. Solutions that do not violate
the constraint are assigned rank 0. The solution with the least constraint violation
value gets rank 1, and the rest of the solutions are assigned increasing ranks in the

9 Memetic Algorithms in Constrained Optimization 143

Algorithm 19. Infeasibility Driven Evolutionary Algorithm (IDEA)

begin1

// Given population size N number of generations NG > 1
and Proportion of infeasible solutions 0 < α < 1

Nin f ← α ∗N;2

Nf ← N−Nin f ;3

set pop1← Initialize();4

Evaluate(pop1);5

for i = 2 to NG do6

child popi−1← Evolve(popi−1);7

Evaluate(child popi−1);8

(S f ,Sin f)← Split(popi−1 +child popi−1);9

Rank(S f);10

Rank(Sin f);11

popi← Sin f (1 : Nin f)+S f (1 : Nf)12

endfor13

end14

ascending order of their constraint violation values. The process is repeated for all
the constraints and as a result each solution in the population gets assigned m ranks.
The violation measure is the sum of these m ranks corresponding to m constraints.

The main steps of IDEA are outlined in Algorithm 19. IDEA uses simulated
binary crossover (SBX) and polynomial mutation operators to generate offspring
from a pair of parents selected using binary tournament as in NSGA-II [200]. Indi-
vidual solutions in the population are evaluated using the original problem defini-
tion (9.1) and the infeasible solutions are identified. The solutions in the parent and
offspring population are divided into a feasible set (S f) and an infeasible set (Sin f).
The solutions in the feasible set and the infeasible set are ranked separately using the
non-dominated sorting and crowding distance sorting [200] based on 2 objectives
as per the modified problem definition (9.2). The solutions for the next generation
are selected from both the sets to maintain infeasible solutions in the population.
In addition, the infeasible solutions are ranked higher than the feasible solutions
to provide a selection pressure to create better infeasible solutions resulting in an
active search through the infeasible search space.

A user-defined parameter α is used to maintain a set of infeasible solutions as a
fraction of the size of the population. The numbers Nf and Nin f denote the number
of feasible and infeasible solutions as determined by parameter α . If the infeasible
set Sin f has more than Nin f solutions, then first Nin f solutions are selected based on
their rank, else all the solutions from Sin f are selected. The rest of the solutions are
selected from the feasible set S f , provided there are at least Nf number of feasible
solutions. If S f has fewer solutions, all the feasible solutions are selected and the
rest are filled with infeasible solutions from Sin f . The solutions are ranked from 1 to
N in the order they are selected. Hence, the infeasible solutions selected first will be
ranked higher than the feasible solutions selected later.

144 T. Ray and R. Sarker

Algorithm 20. Infeasibility Empowered Memetic Algorithm (IEMA)

begin1

// Given population size N number of generations NG > 1
and Proportion of infeasible solutions 0 < α < 1

Nin f ← α ∗N;2

Nf ← N−Nin f ;3

pop1 = Initialize();4

Evaluate(pop1);5

for i = 2 to NG do6

child popi−1← Evolve(popi−1);7

Evaluate(child popi−1);8

(S f ,Sin f)← Split(popi−1 +child popi−1);9

Rank(S f);10

Rank(Sin f);11

popi← Sin f (1 : Nin f)+S f (1 : Nf);12

x← Random solution in popi;13

xbest← Local search (x);14

// xbest is the best solution found using local search
from x

Replace worst solution in popi with xbest;15

Rank(popi);16

Rank the solutions again in popi17

endfor18

end19

9.6.1.2 Infeasibility Empowered Memetic Algorithm (IEMA)

The proposed algorithm IEMA is constructed using IDEA as the baseline algorithm.
For single objective problems, a local search can be a very efficient tool for opti-
mization. However, its performance is largely dependent on the starting solution.
The proposed algorithm tries to exploit the advantages of both these approaches,
i.e. 1) searching near the constraint boundaries by preserving marginally infeasible
solutions during the search, and 2) the effectiveness of local search to expedite the
convergence in potentially optimal regions of the search space. Hence, we refer to
the proposed algorithm as Infeasibility Empowered Memetic Algorithm (IEMA).

The proposed IEMA is outlined in algorithm 20. In IEMA, during each genera-
tion, apart from the evolution of the solutions in IDEA, a local search is done from
a random solution in the population, for a prescribed number of function evalua-
tions (set to 2000 here). Sequential Quadratic Programming (SQP) [729] has been
used in the presented studies for the local search. Thereafter, the worst solution in
the population is replaced by the best solution found from the local search. The
ranking of solutions is done in the same way as done in IDEA. The injection of
good quality solutions found using the local search guides the population towards
potentially optimal regions of the search space. The evolved solutions in turn act as
good starting solutions for the local search in subsequent generations.

9 Memetic Algorithms in Constrained Optimization 145

9.6.1.3 Results on CEC-2010 Benchmark Problems

• Experimental setup: The performance of IEMA is presented for one of the
most recent difficult set of constrained optimization benchmarks, i.e. that of
IEEE CEC-2010, constrained optimization competition. Twenty five runs of
the proposed algorithm IEMA are done on each of the test problems C01 -
C18 [550]. The parameters used for IEMA are same for each problem, i.e. no
tuning of parameters is done across the problems. The parameters are listed in
Table 9.2. A maximum of 2000 function evaluations are allotted to the local
search within each generation.

Table 9.2. Parameters used for IEMA

Parameter Value

Population Size 200

Max. FES for 10D problems: 200000

for 30D problems: 600000

Crossover Probability 0.9

Crossover index 15

Mutation Probability 0.1

Mutation index 20

Infeasibility Ratio (α) 0.9

• PC configuration: All the runs are made on a cluster with the compute nodes
DL140G3 5110 NHP Sata, with following configuration:

1. Processor - Dual-core Intel Xeon 5110
2. RAM - 4GB
3. Operating system - Redhat Linux

IEMA algorithm is implemented in Matlab 2008a.
• Summary of results: The results for 10D problems are shown in Table 9.3,

whereas the results for 30D problems are listed in Table 9.4. To determine the
median, following procedure is adopted. All the runs in which a feasible solu-
tion was found are sorted based on the best function value obtained. Thereafter,
all the runs in which no feasible solutions are found are sorted based on the
mean constraint violation of the best (infeasible) solution found. Feasible runs
are ranked above infeasible runs. In the sorted list, the 13th solution is reported
as the median solution (only if the median is feasible). The best, mean and worst
runs reported in the tables are based only on the runs in which at least one fea-
sible solution was found. The number of such feasible runs are also reported in
the tables for each problem. The median value, if infeasible is also not reported.

146 T. Ray and R. Sarker

From Table 9.3, it is observed that for 10D problems, IEMA is able to
achieve all (25) feasible runs for 12 problems out of 18. The best value ob-
tained for many problems are much better than the median and worst values,
indicating a possibility of highly multimodal objective functions. This also re-
sults in a correspondingly high value of standard deviation (std), as seen from
the table.

For 30D problems (Table 9.4), the results are worse as compared to the 10D
problems. For 4 out of 18 functions, no feasible solution was identified. Among
the remaining 14 functions, all 25 runs were feasible for 11 problems. Once
again, the results are seen to have a high standard deviation value as in 10D
case, and the best values found are much better than the median/worse values
for some of the problems.

Table 9.3. Performance of IEMA on 10D problems

C01 C02 C03 C04 C05 C06

Best -0.74731 -2.27771 1.46667e-16 -9.98606e-06 -483.611 -578.662

Median -0.74615 -2.27771 3.2005e-15 -9.95109e-06 -483.611 -578.662

Mean -0.743189 -2.27771 6.23456e-07 -9.91135e-06 -379.156 -551.47

std 0.00433099 1.82278e-07 1.40239e-06 8.99217e-08 179.424 73.5817

Feasible 25 25 25 25 24 24

C07 C08 C09 C10 C11 C12

Best 1.74726e-10 1.00753e-10 1.20218e-09 5.4012e-09 -0.00152271 -10.9735

Median 1.9587e-09 3.94831e-09 333.32 42130.4 -0.00152271 -0.199246

Mean 3.25685e-09 4.0702 1.95109e+12 2.5613e+12 -0.00152271 -0.648172

std 3.38717e-09 6.38287 5.40139e+12 3.96979e+12 2.73127e-08 2.19928

Feasible 25 25 23 19 24 24

C13 C14 C15 C16 C17 C18

Best -68.4294 8.03508e-10 9.35405e-10 4.44089e-16 9.47971e-15 2.23664e-15

Median -68.4294 1.29625e-08 26.1715 0.0320248 2.59284e-12 6.78077e-15

Mean -68.0182 56.3081 1.57531e+08 0.0330299 0.00315093 1.61789e-14

std 1.40069 182.866 6.04477e+08 0.0226013 0.0157547 3.82034e-14

Feasible 25 25 25 25 25 25

• Convergence plots: The convergence plots for C09, C10, C14, C15, C17 and
C18 are shown in Figure 9.2. The plots show the feasible solutions only, for
the best runs corresponding to these problems. The objective values have been
plotted in log scale in order to aid visualization.
• Time complexity: The time complexity of the algorithm is shown in Table 9.5.

T 1 and T 2 are as defined in [550]. T 1 represents the average (across C01-
C18) time taken for evaluating the problem 10000 times, whereas T 2 represents
the average time taken across C01-C18 by the algorithm IEMA to run through
10000 FES.

9 Memetic Algorithms in Constrained Optimization 147

Table 9.4. Performance of IEMA on 30D problems

C01 C02 C03 C04 C05 C06

Best -0.821883 -2.28091 - - -286.678 -529.593

Median -0.819145 -2.27767 - - - -

Mean -0.817769 -1.50449 - - -270.93 -132.876

std 0.00478853 2.14056 - - 14.1169 561.042

Feasible 25 25 0 0 4 2

C07 C08 C09 C10 C11 C12

Best 4.81578e-10 1.12009e-09 7314.23 27682 - -

Median 6.32192e-10 0.101033 7.91089e+06 1.1134e+07 - -

Mean 8.48609e-10 17.7033 2.98793e+07 1.58342e+07 - -

std 4.84296e-10 40.8025 4.50013e+07 1.68363e+07 - -

Feasible 25 25 25 25 0 0

C13 C14 C15 C16 C17 C18

Best -68.4294 3.28834e-09 31187.6 6.15674e-12 9.27664e-10 1.37537e-14

Median -67.6537 7.38087e-09 7.28118e+07 1.26779e-10 5.67557e-06 2.12239e-14

Mean -67.4872 0.0615242 2.29491e+08 0.00163294 0.0883974 4.73841e-14

std 0.983662 0.307356 4.64046e+08 0.0081647 0.15109 6.5735e-14

Feasible 25 25 25 25 25 25

Table 9.5. Time complexity of IEMA (in seconds)

T 1 T 2 (T 2−T 1)/T 1

10D problems 2.57636 9.05104 2.51312

30D problem 2.57854 13.2825 4.1512

9.6.2 Case Study 2: MA with Alternative Representation

The job-shop scheduling problem (JSSP) is a well-known practical planning prob-
lem in the manufacturing sector. A classical JSSP is a combination of N jobs and
M machines. Each job consists of a set of operations that has to be processed, on
a set of known machines, and where each operation has a known processing time.
A schedule is a complete set of operations, required by a job, to be performed on
different machines, in a given order. In addition, the process may need to satisfy
other constraints such as (i) no more than one operation of any job can be executed
simultaneously and (ii) no machine can process more than one operation at the same
time. The objectives usually considered in JSSPs are the minimization of makespan.
The total time between the starting of the first operation and the ending of the last
operation, is termed as the “makespan”. We first develop a traditional GA for solv-
ing JSSPs. We then proposed three versions of memetic algorithms using three new

148 T. Ray and R. Sarker

0 0.5 1 1.5 2

x 10
5

10
−10

10
−5

10
0

10
5

10
10

10
15

Function evaluations

O
bj

ec
tiv

e
va

lu
e

C09
C10
C14
C15

(a) 10D

0 1 2 3 4 5 6

x 10
5

10
−10

10
−5

10
0

10
5

10
10

10
15

Function evaluations

O
bj

ec
tiv

e
va

lu
e

C09

C10

C14

C15

(b) 30D

0 0.5 1 1.5 2

x 10
5

10
−15

10
−10

10
−5

Function evaluations

O
bj

ec
tiv

e
va

lu
e

C17
C18

(c) 10D

0 1 2 3 4 5 6

x 10
5

10
−15

10
−10

10
−5

10
0

10
5

Function evaluations

O
bj

ec
tiv

e
va

lu
e

C17
C18

(d) 30D

Fig. 9.2. Convergence plots (y-axis is in log scale)

priority rules for improving the performance of traditional GA, namely: partial re-
ordering (PR), gap reduction (GR) and restricted swapping (RS). The performances
of our proposed algorithms are analyzed by solving 40 well-known benchmark
problems. The chromosome representation, priority rules and the performance anal-
ysis are briefly discussed below.

9.6.2.1 Chromosome Representation

In this study, we do not solve the mathematical model of the job shop problem.
Instead we develop GA and MA for solving the problem directly. We select the job
pair-relationship based representation for the genotype, as in [649, 946], due to the
flexibility of applying genetic operators to it. In this representation, a chromosome is
symbolized by a binary string, where each bit stands for the order of a job pair (u,v)
for a particular machine m. This binary string acts as the genotype of individuals.
The corresponding phenotype represents the job sequence for each machine. Further
details on the chromosome design can be found in Hasan et al. [377].

9 Memetic Algorithms in Constrained Optimization 149

9.6.2.2 Priority Rules

The priority rules developed for this study are as follows.

• Partial Reordering (PR): In this rule, we identify the machine which is the
deciding factor for the makespan and the last job (say J∗) that is to be processed
by that machine. That machine can be termed as the bottleneck machine in
the chromosome under consideration. Then we find the machine (say M∗) that
is required by the first operation of the identified job J∗. The re-ordering rule
then suggests that the first operation of the identified job (J∗) must be the first
task on machine M∗ if it is not already scheduled. If we move the job J∗ from
its current position to the 1st position, we may need to push some other jobs
currently scheduled on machine M∗ to the right. In addition, it may provide an
opportunity to shift some jobs to the left on other machines. The overall process
helps to reduce the makespan for some chromosomes.
• Gap Reduction (GR): After each generation, the generated phenotype usu-

ally leaves some gaps between the jobs. Sometimes, these gaps are necessary
to satisfy the precedence constraints. However, in some cases, a gap could be
removed or reduced by placing a job from the right side of the gap. For a given
machine, this is like swapping between a gap from the left and a job from the
right of a schedule. In addition, a gap may be removed or reduced by simply
moving a job to its adjacent gap at the left. This process would help to develop
a compact schedule from the left and continuing up to the last job for each ma-
chine. Of course, it must ensure no conflict or infeasibility before accepting the
move.
• Restricted swapping (RS): For a given machine, the restricted swapping rule

allows swapping between the adjacent jobs if and only if the resulting schedule
is feasible. This process is carried out only for the job which takes the longest
time for completion.

9.6.2.3 Implementation

First, we implement a simple GA for solving JSSPs. We use simple two point
crossover and bit flip mutation as reproduction operators. We then implemented
three versions of MAs by introducing the priority rules as local search techniques as
follows:

• MA(PR): Partial re-ordering rule with GA,
• MA(GR): Gap reduction rule with GA, and
• MA(GR-RS): Gap reduction and restricted swapping rule with GA

In both GA and MA, we apply elitism in each generation to preserve the best so-
lution found so far, and also to inherit the elite individuals more than the rest. In
performing the crossover operation, we use the tournament selection that chooses
one individual from the elite class of the individuals (i.e. the top 15%) and two in-
dividuals from the rest. This selection then plays a tournament between the last two
and performs crossover between the winner and the elite individual. We rank the

150 T. Ray and R. Sarker

individuals on the basis of the fitness value. From our extensive parametric analysis,
we have chosen the crossover and mutation rate as 0.45 and 0.35 respectively. We
set the population size to 2500 and the number of generations to 1000. Note that
JSSPs usually require a higher population size. For example, Pezzella et al. [721]
used a population size of 5000 even for 10×10 problems. In our approach, GR is
applied to every individual. On the other hand, we apply PR and RS to only 5%
of randomly selected individuals in every generation. To test the performance of
our proposed algorithms, we have solved the 40 benchmark problems designed by
Lawrence [509] and have compared the results.

9.6.2.4 Result and Analysis

Each problem was run 30 times and Table 9.6 compares the performance of four
algorithms we implement [GA, MA(PR), MA(GR), and MA(GR-RS)] in terms of
the % average relative deviation (ARD) from the best result published in the lit-
erature, the standard deviation of % relative deviation (SDRD), and the average
number of fitness evaluations required. From Table 9.6, it is clear that the perfor-
mance of the MAs are better than the GA, and MA(GR) is better than both MA(PR)
and GA. The addition of RS to MA(GR), which is known as MA(GR-RS), has
clearly enhanced the performance of the algorithm. Out of the 40 test problems,
both MA(GR) and MA(GR-RS) obtained exact optimal solutions for 23 problems.
In addition, MA(GR-RS) obtained optimal solutions for another 4 problems and
substantially improved solutions for 10 other problems. In general, these two algo-
rithms converged quickly, which can be seen from the average number of fitness
evaluations.

Table 9.6. Comparing our four algorithms for 40 test problems

Algorithm Optimal ARD SDRD Average # of Average # of Average

Found (%) generations Fitness eval.(103) Computational

time (s)

GA 15 3.591 4.165 270.93 664.90 201.60

MA(PR) 16 3.503 4.192 272.79 660.86 213.42

MA(GR) 23 1.360 2.250 136.54 356.41 105.87

MA(GR-RS) 27 0.968 1.656 146.63 388.58 119.81

As shown in Table 9.6, the addition of the local search techniques to GA (for
the last two MAs) not only improves the quality of solutions significantly but also
helps in converging to the solutions with a lower number of generations and a lower
total number of fitness evaluations. However, as the local search techniques require
additional computation, the computational time per generation for all three MAs
is higher than GA. For example, the average computational time taken per genera-
tion by the algorithms GA, MA(PR), MA(GR) and MA(GR-RS) are 0.744, 0.782,
0.775 and 0.817 seconds respectively. Interestingly, the overall average computa-
tional time per test problem solved, for the algorithm MA(GR-RS), is the lowest

9 Memetic Algorithms in Constrained Optimization 151

among the four algorithms implemented. As of Table 9.6, for all 40 test problems,
the algorithm MA(GR-RS) improved the average of the best solutions over GA by
2.623%, while reducing the computational time by 40.57% on average per problem.
This clearly demonstrates the strength of MAs.

9.7 Summary and Conclusions

This chapter provides a review of various memetic algorithms that have been pro-
posed over the years to deal with constrained optimization problems. Details of
two distinct and widely different classes of MAs are presented in the chapter. The
first MA adopts a conventional representation scheme and employs a population
based global search and a SQP for local search. The population based global search
component of MA explicitly maintains a fraction of marginally infeasible solutions
in a quest to accelerate its rate of convergence. The second MA and its variants
on the other hand is designed to efficiently solve job shop scheduling problems.
The algorithm employs specialized representation, recombination and local search
strategies/heuristics in an attempt to improve the rate of convergence. The exam-
ples clearly highlight the potential benefits that can be realized through the use of
MAs and the range of local learning schemes that can be used to further enhance its
performance.

Acknowledgements. The authors would like to acknowledge the help received from Dr.
Kamrul Hasan for providing results for the Job Shop Scheduling problem, and Mr. Hemant
Kumar Singh for benchmarking IEMA and formatting of this manuscript. The efforts of Dr.
Amitay Isaacs to generate several parts of the code is also acknowledged.

	Memetic Algorithms in Constrained Optimization

	Introduction
	Constrained Optimization
	Classification of MAs
	MAs with Conventional Representation
	MAs with Alternative Representations
	Numerical Case Studies
	Case Study 1: Infeasibility Empowered Memetic Algorithm for Constrained Optimization Problems: MA with Conventional Representation
	Case Study 2: MA with Alternative Representation

	Summary and Conclusions

